Molecular Genetics of Successful Smoking Cessation: Convergent Genome-Wide Association Study Results | Genetics and Genomics | JAMA Psychiatry | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.170.64.36. Please contact the publisher to request reinstatement.
1.
Mokdad  AH, Marks  JS, Stroup  DF, Gerberding  JL.  Actual causes of death in the United States, 2000.  JAMA. 2004;291(10):1238-1245. PubMedGoogle ScholarCrossref
2.
Warner  KE, Burns  DM.  Hardening and the hard-core smoker: concepts, evidence, and implications.  Nicotine Tob Res. 2003;5(1):37-48. PubMedGoogle ScholarCrossref
3.
Uhl  GR.  Molecular genetics of addiction vulnerability.  NeuroRx. 2006;3(3):295-301. PubMedGoogle ScholarCrossref
4.
Xian  H, Scherrer  JF, Madden  PA, Lyons  MJ, Tsuang  M, True  WR, Eisen  SA.  The heritability of failed smoking cessation and nicotine withdrawal in twins who smoked and attempted to quit.  Nicotine Tob Res. 2003;5(2):245-254. PubMedGoogle ScholarCrossref
5.
Karkowski  LM, Prescott  CA, Kendler  KS.  Multivariate assessment of factors influencing illicit substance use in twins from female-female pairs.  Am J Med Genet. 2000;96(5):665-670. PubMedGoogle ScholarCrossref
6.
Tsuang  MT, Lyons  MJ, Meyer  JM, Doyle  T, Eisen  SA, Goldberg  J, True  W, Lin  N, Toomey  R, Eaves  L.  Co-occurrence of abuse of different drugs in men: the role of drug-specific and shared vulnerabilities.  Arch Gen Psychiatry. 1998;55(11):967-972. PubMedGoogle ScholarCrossref
7.
Uhl  GR, Elmer  GI, Labuda  MC, Pickens  RW.  Genetic influences in drug abuse.  In: Gloom  FE, Kupfer  DJ, eds.  Psychopharmacology: The Fourth Generation of Progress. New York, NY: Raven Press; 1995;1793-2783.Google Scholar
8.
True  WR, Heath  AC, Scherrer  JF, Xian  H, Lin  N, Eisen  SA, Lyons  MJ, Goldberg  J, Tsuang  MT.  Interrelationship of genetic and environmental influences on conduct disorder and alcohol and marijuana dependence symptoms.  Am J Med Genet. 1999;88(4):391-397. PubMedGoogle ScholarCrossref
9.
Schnoll  RA, Lerman  C.  Current and emerging pharmacotherapies for treating tobacco dependence.  Expert Opin Emerg Drugs. 2006;11(3):429-444. PubMedGoogle ScholarCrossref
10.
Cofta-Woerpel  L, Wright  KL, Wetter  DW.  Smoking cessation 1: pharmacological treatments.  Behav Med. 2006;32(2):47-56. PubMedGoogle ScholarCrossref
11.
Munafò  MR, Shields  AE, Berrettini  WH, Patterson  F, Lerman  C.  Pharmacogenetics and nicotine addiction treatment.  Pharmacogenomics. 2005;6(3):211-223. PubMedGoogle ScholarCrossref
12.
Munafò  MR, Elliot  KM, Murphy  MF, Walton  RT, Johnstone  EC.  Association of the mu-opioid receptor gene with smoking cessation.  Pharmacogenomics J. 2007;7(5):353-361. PubMedGoogle ScholarCrossref
13.
Johnstone  EC, Yudkin  PL, Hey  K, Roberts  SJ, Welch  SJ, Murphy  MF, Griffiths  SE, Walton  RT.  Genetic variation in dopaminergic pathways and short-term effectiveness of the nicotine patch.  Pharmacogenetics. 2004;14(2):83-90. PubMedGoogle ScholarCrossref
14.
Yudkin  P, Munafò  M, Hey  K, Roberts  S, Welch  S, Johnstone  E, Murphy  M, Griffiths  S, Walton  R.  Effectiveness of nicotine patches in relation to genotype in women versus men: randomised controlled trial.  BMJ. 2004;328(7446):989-990. PubMedGoogle ScholarCrossref
15.
Swan  GE, Valdes  AM, Ring  HZ, Khroyan  TV, Jack  LM, Ton  CC, Curry  SJ, McAfee  T.  Dopamine receptor DRD2 genotype and smoking cessation outcome following treatment with bupropion SR.  Pharmacogenomics J. 2005;5(1):21-29. PubMedGoogle ScholarCrossref
16.
Lerman  C, Jepson  C, Wileyto  EP, Epstein  LH, Rukstalis  M, Patterson  F, Kaufmann  V, Restine  S, Hawk  L, Niaura  R, Berrettini  W.  Role of functional genetic variation in the dopamine D2 receptor (DRD2) in response to bupropion and nicotine replacement therapy for tobacco dependence: results of two randomized clinical trials.  Neuropsychopharmacology. 2006;31(1):231-242. PubMedGoogle Scholar
17.
Lerman  C, Wileyto  EP, Patterson  F, Rukstalis  M, Audrain-McGovern  J, Restine  S, Shields  PG, Kaufmann  V, Redden  D, Benowitz  N, Berrettini  WH.  The functional mu opioid receptor (OPRM1) Asn40Asp variant predicts short-term response to nicotine replacement therapy in a clinical trial.  Pharmacogenomics J. 2004;4(3):184-192. PubMedGoogle ScholarCrossref
18.
Liu  QR, Drgon  T, Johnson  C, Walther  D, Hess  J, Uhl  GR.  Addiction molecular genetics: 639,401 SNP whole genome association identifies many “cell adhesion” genes.  Am J Med Genet B Neuropsychiatr Genet. 2006;141(8):918-925. PubMedGoogle ScholarCrossref
19.
Uhl  GR, Liu  QR, Drgon  T, Johnson  C, Walther  D, Rose  JE.  Molecular genetics of nicotine dependence and abstinence: whole genome association using 520,000 SNPs.  BMC Genet. 2007;8(1):10. PubMedGoogle ScholarCrossref
20.
Uhl  GR, Liu  QR, Walther  D, Hess  J, Naiman  D.  Polysubstance abuse-vulnerability genes: genome scans for association, using 1004 subjects and 1494 single-nucleotide polymorphisms.  Am J Hum Genet. 2001;69(6):1290-1300. PubMedGoogle ScholarCrossref
21.
Liu  QR, Drgon  T, Walther  D, Johnson  C, Poleskaya  O, Hess  J, Uhl  GR.  Pooled association genome scanning: validation and use to identify addiction vulnerability loci in two samples.  Proc Natl Acad Sci U S A. 2005;102(33):11864-11869. PubMedGoogle ScholarCrossref
22.
Johnson  C, Drgon  T, Liu  QR, Walther  D, Edenberg  H, Rice  J, Foroud  T, Uhl  GR.  Pooled association genome scanning for alcohol dependence using 104,268 SNPs: validation and use to identify alcoholism vulnerability loci in unrelated individuals from the collaborative study on the genetics of alcoholism.  Am J Med Genet B Neuropsychiatr Genet. 2006;141(8):844-853. PubMedGoogle ScholarCrossref
23.
Bierut  LJ, Madden  PA, Breslau  N, Johnson  EO, Hatsukami  D, Pomerleau  OF, Swan  GE, Rutter  J, Bertelsen  S, Fox  L, Fugman  D, Goate  AM, Hinrichs  AL, Konvicka  K, Martin  NG, Montgomery  GW, Saccone  NL, Saccone  SF, Wang  JC, Chase  GA, Rice  JP, Ballinger  DG.  Novel genes identified in a high-density genome wide association study for nicotine dependence.  Hum Mol Genet. 2007;16(1):24-35. PubMedGoogle ScholarCrossref
24.
David  SP, Brown  RA, Papandonatos  GD, Kahler  CW, Lloyd-Richardson  EE, Munafò  MR, Shields  PG, Lerman  C, Strong  D, McCaffery  J, Niaura  R.  Pharmacogenetic clinical trial of sustained-release bupropion for smoking cessation.  Nicotine Tob Res. 2007;9(8):821-833. PubMedGoogle ScholarCrossref
25.
Brown  RA, Burgess  ES, Sales  SD, Whiteley  JA, Evans  DM, Miller  IW.  Reliability and validity of a smoking timeline follow-back interview.  Psychol Addict Behav. 1998;12(12):101-112. Google ScholarCrossref
26.
Rose  JE, Behm  FM, Westman  EC.  Nicotine-mecamylamine treatment for smoking cessation: the role of pre-cessation therapy.  Exp Clin Psychopharmacol. 1998;6(3):331-343. PubMedGoogle ScholarCrossref
27.
Bang-Ce  Y, Peng  Z, Bincheng  Y, Songyang  L.  Estimation of relative allele frequencies of single-nucleotide polymorphisms in different populations by microarray hybridization of pooled DNA.  Anal Biochem. 2004;333(1):72-78. PubMedGoogle ScholarCrossref
28.
Sham  P, Bader  JS, Craig  I, O’Donovan  M, Owen  M.  DNA pooling: a tool for large-scale association studies.  Nat Rev Genet. 2002;3(11):862-871. PubMedGoogle ScholarCrossref
29.
Hinds  DA, Seymour  AB, Durham  LK, Banerjee  P, Ballinger  DG, Milos  PM, Cox  DR, Thompson  JF, Frazer  KA.  Application of pooled genotyping to scan candidate regions for association with HDL cholesterol levels.  Hum Genomics. 2004;1(6):421-434. PubMedGoogle ScholarCrossref
30.
Liu  F, Arias-Vásquez  A, Sleegers  K, Aulchenko  YS, Kayser  M, Sanchez-Juan  P, Feng  B-J, Bertoli-Avella  AM, van Swieten  J, Axenovich  TI, Heutink  P, van Broeckhoven  C, Oostra  BA, van Duijn  CM.  A genomewide screen for late-onset Alzheimer disease in a genetically isolated Dutch population.  Am J Hum Genet. 2007;81(1):17-31. PubMedGoogle ScholarCrossref
31.
Papassotiropoulos  A, Stephan  DA, Huentelman  MJ, Hoerndli  FJ, Craig  DW, Pearson  JV, Huynh  KD, Brunner  F, Corneveaux  J, Osborne  D, Wollmer  MA, Aerni  A, Coluccia  D, Hanggi  J, Mondadori  CR, Buchmann  A, Reiman  EM, Caselli  RJ, Henke  K, de Quervain  DJ.  Common Kibra alleles are associated with human memory performance.  Science. 2006;314(5798):475-478. PubMedGoogle ScholarCrossref
32.
Dupont  WD, Plummer  WD  Jr.  Power and sample size calculations: a review and computer program.  Control Clin Trials. 1990;11(2):116-128. PubMedGoogle ScholarCrossref
33.
Wellcome Trust Case Control Consortium.  Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls.  Nature. 2007;447(7145):661-678. PubMedGoogle ScholarCrossref
34.
Swan  GE, Carmelli  D, Rosenman  RH, Fabsitz  RR, Christian  JC.  Smoking and alcohol consumption in adult male twins: genetic heritability and shared environmental influences.  J Subst Abuse. 1990;2(1):39-50. PubMedGoogle ScholarCrossref
35.
Broms  U, Silventoinen  K, Madden  PA, Heath  AC, Kaprio  J.  Genetic architecture of smoking behavior: a study of Finnish adult twins.  Twin Res Hum Genet. 2006;9(1):64-72. PubMedGoogle ScholarCrossref
36.
Maes  HH, Sullivan  PF, Bulik  CM, Neale  MC, Prescott  CA, Eaves  LJ, Kendler  KS.  A twin study of genetic and environmental influences on tobacco initiation, regular tobacco use and nicotine dependence.  Psychol Med. 2004;34(7):1251-1261. PubMedGoogle ScholarCrossref
37.
Carmelli  D, Swan  GE, Robinette  D, Fabsitz  RR.  Heritability of substance use in the NAS-NRC Twin Registry.  Acta Genet Med Gemellol (Roma). 1990;39(1):91-98. PubMedGoogle ScholarCrossref
38.
Takeuchi  T, Misaki  A, Liang  SB, Tachibana  A, Hayashi  N, Sonobe  H, Ohtsuki  Y.  Expression of T-cadherin (CDH13, H-cadherin) in human brain and its characteristics as a negative growth regulator of epidermal growth factor in neuroblastoma cells.  J Neurochem. 2000;74(4):1489-1497. PubMedGoogle ScholarCrossref
39.
Fredette  BJ, Miller  J, Ranscht  B.  Inhibition of motor axon growth by T-cadherin substrata.  Development. 1996;122(10):3163-3171. PubMedGoogle Scholar
40.
Kipmen-Korgun  D, Osibow  K, Zoratti  C, Schraml  E, Greilberger  J, Kostner  GM, Jurgens  G, Graier  WF.  T-cadherin mediates low-density lipoprotein-initiated cell proliferation via the Ca(2+)-tyrosine kinase-Erk1/2 pathway.  J Cardiovasc Pharmacol. 2005;45(5):418-430. PubMedGoogle ScholarCrossref
41.
Philippova  M, Ivanov  D, Allenspach  R, Takuwa  Y, Erne  P, Resink  T.  RhoA and Rac mediate endothelial cell polarization and detachment induced by T-cadherin.  FASEB J. 2005;19(6):588-590. PubMedGoogle Scholar
42.
Hug  C, Wang  J, Ahmad  NS, Bogan  JS, Tsao  TS, Lodish  HF.  T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin.  Proc Natl Acad Sci U S A. 2004;101(28):10308-10313. PubMedGoogle ScholarCrossref
43.
Ivanov  DB, Philippova  MP, Tkachuk  VA.  Structure and functions of classical cadherins.  Biochemistry (Mosc). 2001;66(10):1174-1186. PubMedGoogle ScholarCrossref
44.
Lachman  HM, Fann  CS, Bartzis  M, Evgrafov  OV, Rosenthal  RN, Nunes  EV, Miner  C, Santana  M, Gaffney  J, Riddick  A, Hsu  CL, Knowles  JA.  Genomewide suggestive linkage of opioid dependence to chromosome 14q.  Hum Mol Genet. 2007;16(11):1327-1334. PubMedGoogle ScholarCrossref
45.
Dean  C, Scholl  FG, Choih  J, DeMaria  S, Berger  J, Isacoff  E, Scheiffele  P.  Neurexin mediates the assembly of presynaptic terminals.  Nat Neurosci. 2003;6(7):708-716. PubMedGoogle ScholarCrossref
46.
Yamakawa  K, Huot  YK, Haendelt  MA, Hubert  R, Chen  XN, Lyons  GE, Korenberg  JR.  DSCAM: a novel member of the immunoglobulin superfamily maps in a Down syndrome region and is involved in the development of the nervous system.  Hum Mol Genet. 1998;7(2):227-237. PubMedGoogle ScholarCrossref
47.
Chen  BE, Kondo  M, Garnier  A, Watson  FL, Puettmann-Holgado  R, Lamar  DR, Schmucker  D.  The molecular diversity of DSCAM is functionally required for neuronal wiring specificity in Drosophila Cell. 2006;125(3):607-620. PubMedGoogle ScholarCrossref
48.
Keene  AC, Krashes  MJ, Leung  B, Bernard  JA, Waddell  S.  Drosophila dorsal paired medial neurons provide a general mechanism for memory consolidation.  Curr Biol. 2006;16(15):1524-1530. PubMedGoogle ScholarCrossref
49.
Feil  S, Zimmermann  P, Knorn  A, Brummer  S, Schlossmann  J, Hofmann  F, Feil  R.  Distribution of cGMP-dependent protein kinase type I and its isoforms in the mouse brain and retina.  Neuroscience. 2005;135(3):863-868. PubMedGoogle ScholarCrossref
50.
Demyanenko  GP, Halberstadt  AI, Pryzwansky  KB, Werner  C, Hofmann  F, Maness  PF.  Abnormal neocortical development in mice lacking cGMP-dependent protein kinase I.  Brain Res Dev Brain Res. 2005;160(1):1-8. PubMedGoogle ScholarCrossref
51.
Weitzdoerfer  R, Hoeger  H, Engidawork  E, Engelmann  M, Singewald  N, Lubec  G, Lubec  B.  Neuronal nitric oxide synthase knock-out mice show impaired cognitive performance.  Nitric Oxide. 2004;10(3):130-140. PubMedGoogle ScholarCrossref
52.
Itzhak  Y, Martin  JL, Black  MD, Huang  PL.  The role of neuronal nitric oxide synthase in cocaine-induced conditioned place preference.  Neuroreport. 1998;9(11):2485-2488. PubMedGoogle ScholarCrossref
53.
Kleppisch  T, Wolfsgruber  W, Feil  S, Allmann  R, Wotjak  CT, Goebbels  S, Nave  KA, Hofmann  F, Feil  R.  Hippocampal cGMP-dependent protein kinase I supports an age- and protein synthesis–dependent component of long-term potentiation but is not essential for spatial reference and contextual memory.  J Neurosci. 2003;23(14):6005-6012. PubMedGoogle Scholar
54.
Underwood  JG, Boutz  PL, Dougherty  JD, Stoilov  P, Black  DL.  Homologues of the Caenorhabditis elegans Fox-1 protein are neuronal splicing regulators in mammals.  Mol Cell Biol. 2005;25(22):10005-10016. PubMedGoogle ScholarCrossref
55.
Koob  GF.  The neurobiology of addiction: a neuroadaptational view relevant for diagnosis.  Addiction. 2006;101(suppl 1):23-30. PubMedGoogle ScholarCrossref
56.
Hughes  JR, Giovino  GA, Klevens  RM, Fiore  MC.  Assessing the generalizability of smoking studies.  Addiction. 1997;92(4):469-472. PubMedGoogle ScholarCrossref
57.
Dudbridge  F, Gusnanto  A, Koeleman  BP.  Detecting multiple associations in genome-wide studies.  Hum Genomics. 2006;2(5):310-317. PubMedGoogle ScholarCrossref
58.
Damaj  MI, Carroll  FI, Eaton  JB, Navarro  HA, Blough  BE, Mirza  S, Lukas  RJ, Martin  BR.  Enantioselective effects of hydroxy metabolites of bupropion on behavior and on function of monoamine transporters and nicotinic receptors.  Mol Pharmacol. 2004;66(3):675-682. PubMedGoogle ScholarCrossref
59.
Ascher  JA, Cole  JO, Colin  JN, Feighner  JP, Ferris  RM, Fibiger  HC, Golden  RN, Martin  P, Potter  WZ, Richelson  E, Sulser  F.  Bupropion: a review of its mechanism of antidepressant activity.  J Clin Psychiatry. 1995;56(9):395-401. PubMedGoogle Scholar
Original Article
June 2008

Molecular Genetics of Successful Smoking Cessation: Convergent Genome-Wide Association Study Results

Author Affiliations

Author Affiliations: Molecular Neurobiology Branch, National Institutes of Health–Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland (Drs Uhl, Liu, and Drgon and Mss Johnson and Walther); Department of Psychiatry and Behavioral Sciences and Center for Nicotine and Smoking Cessation Research, Duke University, Durham, North Carolina (Dr Rose); Departments of Family Medicine (Dr David) and Psychiatry and Human Behavior (Dr Niaura), Warren Alpert Medical School, Brown University, Pawtucket, Rhode Island; Transdisciplinary Research Group, Butler Hospital, Providence, Rhode Island (Dr Niaura); and Tobacco Use Research Center, Department of Psychiatry and Abramson Cancer Center, University of Pennsylvania, Philadelphia (Dr Lerman).

Arch Gen Psychiatry. 2008;65(6):683-693. doi:10.1001/archpsyc.65.6.683
Abstract

Context  Smoking remains a major public health problem. Twin studies indicate that the ability to quit smoking is substantially heritable, with genetics that overlap modestly with the genetics of vulnerability to dependence on addictive substances.

Objectives  To identify replicated genes that facilitate smokers' abilities to achieve and sustain abstinence from smoking (hereinafter referred to as quit-success genes) found in more than 2 genome-wide association (GWA) studies of successful vs unsuccessful abstainers, and, secondarily, to nominate genes for selective involvement in smoking cessation success with bupropion hydrochloride vs nicotine replacement therapy (NRT).

Design  The GWA results in subjects from 3 centers, with secondary analyses of NRT vs bupropion responders.

Setting  Outpatient smoking cessation trial participants from 3 centers.

Participants  European American smokers who successfully vs unsuccessfully abstain from smoking with biochemical confirmation in a smoking cessation trial using NRT, bupropion, or placebo (N = 550).

Main Outcome Measures  Quit-success genes, reproducibly identified by clustered nominally positive single-nucleotide polymorphisms (SNPs) in more than 2 independent samples with significant P values based on Monte Carlo simulation trials. The NRT-selective genes were nominated by clustered SNPs that display much larger t values for NRT vs placebo comparisons. The bupropion-selective genes were nominated by bupropion-selective results.

Results  Variants in quit-success genes are likely to alter cell adhesion, enzymatic, transcriptional, structural, and DNA, RNA, and/or protein-handling functions. Quit-success genes are identified by clustered nominally positive SNPs from more than 2 samples and are unlikely to represent chance observations (Monte Carlo P< .0003). These genes display modest overlap with genes identified in GWA studies of dependence on addictive substances and memory.

Conclusions  These results support polygenic genetics for success in abstaining from smoking, overlap with genetics of substance dependence and memory, and nominate gene variants for selective influences on therapeutic responses to bupropion vs NRT. Molecular genetics should help match the types and/or intensity of antismoking treatments with the smokers most likely to benefit from them.

×