Vena Cava Filter Use in Trauma and Rates of Pulmonary Embolism, 2003-2015 | Orthopedics | JAMA Surgery | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
Geerts  WH, Code  KI, Jay  RM, Chen  E, Szalai  JP.  A prospective study of venous thromboembolism after major trauma.  N Engl J Med. 1994;331(24):1601-1606.PubMedGoogle ScholarCrossref
Haut  ER, Chang  DC, Pierce  CA,  et al.  Predictors of posttraumatic deep vein thrombosis (DVT): hospital practice versus patient factors: an analysis of the National Trauma Data Bank (NTDB).  J Trauma. 2009;66(4):994-999.PubMedGoogle ScholarCrossref
Knudson  MM, Gomez  D, Haas  B, Cohen  MJ, Nathens  AB.  Three thousand seven hundred thirty-eight posttraumatic pulmonary emboli: a new look at an old disease.  Ann Surg. 2011;254(4):625-632.PubMedGoogle ScholarCrossref
Office of the Surgeon General.  The Surgeon General’s Call to Action to Prevent Deep Vein Thrombosis and Pulmonary Embolism. Rockville, MD: Office of the Surgeon General; 2008. PubMed
Rogers  FB, Cipolle  MD, Velmahos  G, Rozycki  G, Luchette  FA.  Practice management guidelines for the prevention of venous thromboembolism in trauma patients: the EAST Practice Management Guidelines Work Group.  J Trauma. 2002;53(1):142-164.PubMedGoogle ScholarCrossref
Gould  MK, Garcia  DA, Wren  SM,  et al; American College of Chest Physicians.  Prevention of VTE in nonorthopedic surgical patients: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines.  [published correction appears in Chest. 2012;141(5):1369].  Chest. 2012;141(2)(suppl):e227S-e277S.PubMedGoogle ScholarCrossref
Malinoski  D, Ewing  T, Patel  MS,  et al.  Risk factors for venous thromboembolism in critically ill trauma patients who cannot receive chemical prophylaxis.  Injury. 2013;44(1):80-85.PubMedGoogle ScholarCrossref
Carlin  AM, Tyburski  JG, Wilson  RF, Steffes  C.  Prophylactic and therapeutic inferior vena cava filters to prevent pulmonary emboli in trauma patients.  Arch Surg. 2002;137(5):521-525.PubMedGoogle ScholarCrossref
McMurtry  AL, Owings  JT, Anderson  JT, Battistella  FD, Gosselin  R.  Increased use of prophylactic vena cava filters in trauma patients failed to decrease overall incidence of pulmonary embolism.  J Am Coll Surg. 1999;189(3):314-320.PubMedGoogle ScholarCrossref
Haut  ER, Garcia  LJ, Shihab  HM,  et al.  The effectiveness of prophylactic inferior vena cava filters in trauma patients: a systematic review and meta-analysis.  JAMA Surg. 2014;149(2):194-202.PubMedGoogle ScholarCrossref
Kaufman  JA, Kinney  TB, Streiff  MB,  et al.  Guidelines for the use of retrievable and convertible vena cava filters: report from the Society of Interventional Radiology multidisciplinary consensus conference.  J Vasc Interv Radiol. 2006;17(3):449-459.PubMedGoogle ScholarCrossref
Khansarinia  S, Dennis  JW, Veldenz  HC, Butcher  JL, Hartland  L.  Prophylactic Greenfield filter placement in selected high-risk trauma patients.  J Vasc Surg. 1995;22(3):231-235.PubMedGoogle ScholarCrossref
Leach  TA, Pastena  JA, Swan  KG, Tikellis  JI, Blackwood  JM, Odom  JW.  Surgical prophylaxis for pulmonary embolism.  Am Surg. 1994;60(4):292-295.PubMedGoogle Scholar
Rodriguez  JL, Lopez  JM, Proctor  MC,  et al.  Early placement of prophylactic vena caval filters in injured patients at high risk for pulmonary embolism.  J Trauma. 1996;40(5):797-802.PubMedGoogle ScholarCrossref
Rogers  FB, Shackford  SR, Wilson  J, Ricci  MA, Morris  CS.  Prophylactic vena cava filter insertion in severely injured trauma patients: indications and preliminary results.  J Trauma. 1993;35(4):637-641.PubMedGoogle ScholarCrossref
Rogers  FB, Shackford  SR, Ricci  MA, Wilson  JT, Parsons  S.  Routine prophylactic vena cava filter insertion in severely injured trauma patients decreases the incidence of pulmonary embolism.  J Am Coll Surg. 1995;180(6):641-647.PubMedGoogle Scholar
Greenfield  LJ, Proctor  MC, Michaels  AJ, Taheri  PA.  Prophylactic vena caval filters in trauma: the rest of the story.  J Vasc Surg. 2000;32(3):490-495.PubMedGoogle ScholarCrossref
Allen  TL, Carter  JL, Morris  BJ, Harker  CP, Stevens  MH.  Retrievable vena cava filters in trauma patients for high-risk prophylaxis and prevention of pulmonary embolism.  Am J Surg. 2005;189(6):656-661.PubMedGoogle ScholarCrossref
Morris  CS, Rogers  FB, Najarian  KE, Bhave  AD, Shackford  SR.  Current trends in vena caval filtration with the introduction of a retrievable filter at a level I trauma center.  J Trauma. 2004;57(1):32-36.PubMedGoogle ScholarCrossref
Hoff  WS, Hoey  BA, Wainwright  GA,  et al.  Early experience with retrievable inferior vena cava filters in high-risk trauma patients.  J Am Coll Surg. 2004;199(6):869-874.PubMedGoogle ScholarCrossref
Gosin  JS, Graham  AM, Ciocca  RG, Hammond  JS.  Efficacy of prophylactic vena cava filters in high-risk trauma patients.  Ann Vasc Surg. 1997;11(1):100-105.PubMedGoogle ScholarCrossref
Rogers  FB, Shackford  SR, Ricci  MA, Huber  BM, Atkins  T.  Prophylactic vena cava filter insertion in selected high-risk orthopaedic trauma patients.  J Orthop Trauma. 1997;11(4):267-272.PubMedGoogle ScholarCrossref
Rosenthal  D, McKinsey  JF, Levy  AM, Lamis  PA, Clark  MD.  Use of the Greenfield filter in patients with major trauma.  Cardiovasc Surg. 1994;2(1):52-55.PubMedGoogle Scholar
Gorman  PH, Qadri  SF, Rao-Patel  A.  Prophylactic inferior vena cava (IVC) filter placement may increase the relative risk of deep venous thrombosis after acute spinal cord injury.  J Trauma. 2009;66(3):707-712.PubMedGoogle ScholarCrossref
Decousus  H, Leizorovicz  A, Parent  F,  et al; Prévention du Risque d’Embolie Pulmonaire par Interruption Cave Study Group.  A clinical trial of vena caval filters in the prevention of pulmonary embolism in patients with proximal deep-vein thrombosis.  N Engl J Med. 1998;338(7):409-415.PubMedGoogle ScholarCrossref
Rajasekhar  A, Lottenberg  R, Lottenberg  L, Liu  H, Ang  D.  Pulmonary embolism prophylaxis with inferior vena cava filters in trauma patients: a systematic review using the Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines.  J Thromb Thrombolysis. 2011;32(1):40-46.PubMedGoogle ScholarCrossref
American College of Surgeons. National Trauma Data Bank report 2014. Accessed November 10, 2015.
Healthcare Cost and Utilization Project. NIS database documentation. Accessed July 10, 2016.
Glance  LG, Osler  TM, Mukamel  DB, Meredith  W, Wagner  J, Dick  AW.  TMPM-ICD9: a trauma mortality prediction model based on ICD-9-CM codes.  Ann Surg. 2009;249(6):1032-1039.PubMedGoogle ScholarCrossref
Rogers  FB, Shackford  SR, Horst  MA,  et al.  Determining venous thromboembolic risk assessment for patients with trauma: the Trauma Embolic Scoring System.  J Trauma Acute Care Surg. 2012;73(2):511-515.PubMedGoogle ScholarCrossref
Yunus  TE, Tariq  N, Callahan  RE,  et al.  Changes in inferior vena cava filter placement over the past decade at a large community-based academic health center.  J Vasc Surg. 2008;47(1):157-165.PubMedGoogle ScholarCrossref
Kuy  S, Dua  A, Lee  CJ,  et al.  National trends in utilization of inferior vena cava filters in the United States, 2000-2009.  J Vasc Surg Venous Lymphat Disord. 2014;2(1):15-20.PubMedGoogle ScholarCrossref
Kaufman  JA.  Retrievable vena cava filters.  Tech Vasc Interv Radiol. 2004;7(2):96-104.PubMedGoogle ScholarCrossref
Dixon  A, Stavropoulos  SW.  Improving retrieval rates for retrievable inferior vena cava filters.  Expert Rev Med Devices. 2013;10(1):135-141.PubMedGoogle ScholarCrossref
Ray  CE  Jr, Mitchell  E, Zipser  S, Kao  EY, Brown  CF, Moneta  GL.  Outcomes with retrievable inferior vena cava filters: a multicenter study.  J Vasc Interv Radiol. 2006;17(10):1595-1604.PubMedGoogle ScholarCrossref
Kim  HS, Young  MJ, Narayan  AK, Hong  K, Liddell  RP, Streiff  MB.  A comparison of clinical outcomes with retrievable and permanent inferior vena cava filters.  J Vasc Interv Radiol. 2008;19(3):393-399.PubMedGoogle ScholarCrossref
Dabbagh  O, Nagam  N, Chitima-Matsiga  R, Bearelly  S, Bearelly  D.  Retrievable inferior vena cava filters are not getting retrieved: where is the gap?  Thromb Res. 2010;126(6):493-497.PubMedGoogle ScholarCrossref
Karmy-Jones  R, Jurkovich  GJ, Velmahos  GC,  et al.  Practice patterns and outcomes of retrievable vena cava filters in trauma patients: an AAST multicenter study.  J Trauma. 2007;62(1):17-24.PubMedGoogle ScholarCrossref
Imberti  D, Bianchi  M, Farina  A, Siragusa  S, Silingardi  M, Ageno  W.  Clinical experience with retrievable vena cava filters: results of a prospective observational multicenter study.  J Thromb Haemost. 2005;3(7):1370-1375.PubMedGoogle ScholarCrossref
Wiener  RS, Schwartz  LM, Woloshin  S.  Time trends in pulmonary embolism in the United States: evidence of overdiagnosis.  Arch Intern Med. 2011;171(9):831-837.PubMedGoogle ScholarCrossref
US Food & Drug Administration. Removing retrievable inferior vena cava filters: initial communication. Published August 9, 2010. Accessed July 12, 2016.
Original Investigation
August 2017

Vena Cava Filter Use in Trauma and Rates of Pulmonary Embolism, 2003-2015

Author Affiliations
  • 1Trauma Research Program, Chandler Regional Medical Center, Chandler, Arizona
  • 2Trauma and Acute Care Surgery, Penn Medicine Lancaster General Health, Lancaster, Pennsylvania
  • 3Department of Surgery, University of Vermont College of Medicine, Burlington
  • 4University of North Carolina at Chapel Hill School of Medicine
  • 5Trauma Service, Scripps Mercy Hospital, San Diego, California
JAMA Surg. 2017;152(8):724-732. doi:10.1001/jamasurg.2017.1018
Key Points

Question  Are temporal trends in vena cava filter placement and pulmonary embolism changing over time?

Findings  In this cohort study using data from patients with traumatic injury from 3 databases, rates of vena cava filter placement showed an initial upward trend followed by a precipitous decline. Rates of pulmonary embolism demonstrated an initial increase and were followed by a reduction in the Pennsylvania Trauma Outcome Study and National Trauma Data Bank data sets, with no change in the National (Nationwide) Inpatient Sample data set.

Meaning  Vena cava filter use is not associated with rates of pulmonary embolism.


Importance  Vena cava filter (VCF) placement for pulmonary embolism (PE) prophylaxis in trauma is controversial. Limited research exists detailing trends in VCF use and occurrence of PE over time.

Objective  To analyze state and nationwide temporal trends in VCF placement and PE occurrence from 2003 to 2015 using available data sets.

Design, Setting, and Participants  A retrospective trauma cohort study was conducted using data from the Pennsylvania Trauma Outcome Study (PTOS) (461 974 patients from 2003 to 2015), the National Trauma Data Bank (NTDB) (5 755 095 patients from 2003 to 2014), and the National (Nationwide) Inpatient Sample (NIS) (24 449 476 patients from 2003 to 2013) databases.

Main Outcomes and Measures  Temporal trends in VCF placement and PE rates, filter type (prophylactic or therapeutic), and established predictors of PE (obesity, pregnancy, cancer, deep vein thrombosis, major procedure, spinal cord paralysis, venous injury, lower extremity fracture, pelvic fracture, central line, intracranial hemorrhage, and blood transfusion). Prophylactic filters were defined as VCFs placed before or without an existing PE, while therapeutic filters were defined as VCFs placed after a PE.

Results  Of the 461 974 patients in PTOS, the mean (SD) age was 47.2 (26.4) and 61.6% (284 621) were men; of the 5 755 095 patients in NTDB, the mean age (SD) was 42.0 (24.3) and 63.7% (3 666 504) were men; and of the 24 449 476 patients in NIS, the mean (SD) age was 58.0 (25.2) and 49.7% (12 160 231) were men. Of patients receiving a filter (11 405 in the PTOS, 71 029 in the NTDB, and 189 957 in the NIS), most were prophylactic VCFs (93.6% in the PTOS, 93.5% in the NTDB, and 93.3% in the NIS). Unadjusted and adjusted temporal trends for the PTOS and NTDB showed initial increases in filter placement followed by significant declines (unadjusted reductions in VCF placement rates, 76.8% in the PTOS and 53.3% in the NTDB). The NIS demonstrated a similar unadjusted trend, with a slight increase and modest decline (22.2%) in VCF placement rates over time; however, adjusted trends showed a slight but significant increase in filter rates. Adjusted PE rates for the PTOS and NTDB showed significant initial increases followed by slight decreases, with limited variation during the declining filter use periods. The NIS showed an initial increase in PE rates followed by a period of stagnation.

Conclusions and Relevance  Despite a precipitous decline of VCF use in trauma, PE rates remained unchanged during this period. Taking this association into consideration, VCFs may have limited utility in influencing rates of PE. More judicious identification of at-risk patients is warranted to determine individuals who would most benefit from a VCF.