The Perforated Duodenal Diverticulum

Chad M. Thorson, MD; Pedro S. Paz Ruiz, MD; Rosiane A. Roeder, MD; Danny Sleeman, MD; Victor J. Casillas, MD

Objective: To perform a literature review of perforated duodenal diverticulum with attention to changes in management.

Data Sources: We searched PubMed for relevant studies published from January 1, 1989, through August 1, 2011. In addition, we identified and reviewed 4 cases at our institution.

Study Selection: Search phrases were perforated duodenal diverticulum and duodenal diverticulitis.

Data Extraction: Patient demographics, clinical characteristics, radiologic findings, treatment, and outcomes were obtained.

Results: We reviewed 39 studies producing 57 cases, which were combined with the 4 at our institution for a total of 61 patients. The addition of 2 previous series revealed a total of 162 patients in the world literature. Perforations were most commonly located in the second or third portion of the duodenum (60 of 61 cases [98%]), and the most frequent cause was diverticulitis (42 of 61 [69%]). There has been a dramatic improvement in the preoperative diagnosis of perforated diverticula. Only 13 of 101 reported cases (13%) were correctly diagnosed before 1989, and 29 of 61 (48%) in the present series were identified with radiologic examinations. Most patients in the current series (47 of 61) underwent operative treatment for their perforation, although 14 underwent successful nonoperative management. Complications were reported in 17 of 47 patients in the surgical group (36%), whereas only 1 complication was seen in patients undergoing nonoperative management. Mortality in the surgical group was 6% (3 of 47), and no deaths were reported in the nonoperative group.

Conclusions: Perforation of a duodenal diverticulum is rare, with only 162 cases reported in the world literature. Nonoperative management has emerged as a safe, practical alternative to surgery in selected patients.

Methods

This study was fully approved by the University of Miami institutional review board. Four patients were treated for a perforated duodenal diverticulum at our institution from January 1, 2009, through June 30, 2010. Inpatient medical records and radiologic films were reviewed. A comprehensive systematic literature review was conducted to identify all cases of perforated duodenal diverticulum reported since the series by Duarte et al.3 We identified a total of 39 articles. When combined with our 4 cases, 61 patients were included in the analysis. Information about demographics, clinical presentation, radiologic findings, treatment, and outcomes were obtained from the literature. Data were compiled using a spreadsheet application (Microsoft Excel; Microsoft Corporation) and statistical analyses were performed using commercially available software (SPSS, version 18.0; SPSS, Inc) with a significance level set at .05. Dichotomous variables

See Invited Critique at end of article

Pierre Jean Baptiste Chomel,1 a French pathologist, provided the first description of a duodenal diverticulum in 1710. The prevalence has been found to be as high as 22% in autopsy series, but most cases are asymptomatic. Perforation is a rare complication of duodenal diverticula. Until 1989, only 101 cases of perforated duodenal diverticula were reported in the literature. Juler et al2 published a collection of 56 cases in 1969, followed by 45 additional cases reported by Duarte et al3 in 1992. Most were treated surgically, with complications commonly encountered. The purpose of this review is to present 4 cases of perforated diverticula that underwent nonoperative management at our institution. In addition, we reviewed case reports and case series published in 1989 or later to provide an update of the world literature on the subject.

Author Affiliations: Dewitt Daughtry Family Department of Surgery (Drs Thorson, Roeder, and Sleeman) and Department of Radiology (Drs Paz Ruiz and Casillas), University of Miami Miller School of Medicine, Miami, Florida.
were assessed using χ^2 analysis or the Fisher exact test when appropriate.

REPORT OF CASES

CASE 1

A 72-year-old woman presented to the emergency department with a 4-hour history of epigastric and right upper quadrant pain. The pain was associated with episodes of increased intensity that were relieved with vomiting. Medical history included hypertension, hyperlipidemia, and cholecystectomy. In addition, the patient had a history of pancreatitis 3 years previously due to ampullary fibrosis and treatment with endoscopic retrograde cholangiopancreatography and sphincterotomy. Results of the examination revealed tenderness without evidence of peritonitis. In the emergency department, she developed a fever of 39.0°C. Laboratory tests revealed an elevated leukocyte count of 15.4 $\times 10^3$ cells/μL (to convert to cells $\times 10^3$ cells per liter, multiply by 0.001), but results were otherwise normal. A plain abdominal radiograph revealed no abnormalities. Owing to the history of ampullary fibrosis, abdominal ultrasonography was performed, revealing normal ductal structure without dilation or stones. Computed tomography (CT) with oral and intravenous contrast showed a complex collection containing extraluminal air and fluid (Figure 1A). The collection was located superior to the second portion of the duodenum, associated with thickening of the duodenal wall, retroperitoneal fat stranding, and absence of contrast extravasation. The presumptive diagnosis was a contained perforated duodenal ulcer. The patient was admitted to the acute care surgical service for intravenous antibiotics and bowel rest. An upper gastrointestinal tract (GI) series with barium was obtained during the hospital stay. Findings included an outpouching measuring $2.8 \times 3.4 \times 2.6$ cm in the medial aspect of the duodenum consistent with a duodenal diverticulum (Figure 1B). The patient improved with antibiotic therapy, total parenteral nutrition, and bowel rest and was discharged on hospital day 13 without complications.

CASE 2

A 62-year-old man presented to the emergency department with an 8-hour history of abdominal pain located in the right flank and back. He denied fever, nausea, and vomiting. Medical history included hypertension and diabetes mellitus. Surgical history was significant for an exploratory laparotomy after a motor vehicle crash leading to splenectomy. Results of the examination revealed tenderness in the right upper quadrant and costa-

Figure 1. Radiologic images in a 72-year-old woman in the present series. A, Axial computed tomographic image of perforated duodenal diverticulum demonstrated by complex collection with fluid and gas (arrow) surrounding the second and third portion of the duodenum. B, Upper gastrointestinal tract series demonstrates an outpouching (arrow) in the medial aspect of the second portion of the duodenum.

Figure 2. Perforated duodenal diverticulum in a 62-year-old man with a 1-day history of abdominal pain in the present series. Axial computed tomographic image revealing fluid and gas (arrow) near the third portion of the duodenum and associated fat stranding (arrowheads).
phrenic angle with absence of peritoneal signs. Initial non-contrast-enhanced CT was performed (renal stone protocol), revealing inflammatory mesenteric stranding in the head of the pancreas. Acute pancreatitis was suspected. Laboratory test results included an elevated white blood cell count at 13.4 \times 10^3 cells/µL. Abdominal ultrasonography showed a hypoechoic structure measuring 4.0 \times 2.3 cm in the pancreatic neck. The hepatobiliary surgical service was consulted owing to a suspected infected pancreatic pseudocyst or a cystic neoplasm. A follow-up CT with oral and intravenous contrast revealed an extraluminal collection measuring 6.0 \times 1.8 cm inferior to the third portion of the duodenum containing air and contrast medium (Figure 2). The patient was admitted with suspected retroperitoneal perforation of a duodenal ulcer and was treated with intravenous antibiotics and bowel rest. A subsequent upper GI series demonstrated a duodenal diverticulum measuring 6.0 \times 2.0 \times 3.0 cm near the head of the pancreas with extravasation of contrast. The patient improved without complications and was discharged on hospital day 13.

CASE 3

A 56-year-old woman with a history of hypertension and gastroesophageal reflux disease presented to an outside hospital with a 1-week history of epigastric pain, nausea, vomiting, and anorexia. Results of the workup revealed a possible duodenal perforation, and the patient was transferred to our institution for continued care. On arrival, the patient complained of mild abdominal discomfort. She was afebrile. Examination results revealed a tender abdomen without peritonitis. Laboratory findings included a white blood cell count within the reference range. Review of the CT scan from the outside hospital showed perforation of the second and third portion of the duodenum with extraluminal air and fluid. She was admitted with suspected duodenal perforation but, given the location, perforation of an inflamed diverticulum was also suspected. The patient received intravenous antibiotics and bowel rest. Results of an upper GI series confirmed a diverticulum along the medial aspect of the second portion of the duodenum. She continued to receive total parenteral nutrition for 14 days before transition to a regular diet and was discharged on hospital day 18.

CASE 4

A 62-year-old man presented to the emergency department after a 2-week history of epigastric pain diagnosed as colitis while on vacation in Mexico. He was afebrile, denied nausea or vomiting, and had a white blood cell count of 7.5 \times 10^3 cells/µL. On examination, he demonstrated epigastric tenderness without peritoneal signs. He underwent contrast-enhanced CT of the abdomen, which revealed a 6.3 \times 4.5–cm abscess posterior to the second portion of the duodenum, inferior to the pancreatic head (Figure 3A). He was admitted to the general surgical service with suspected contained duodenal perforation. He underwent conservative management with bowel rest, total parenteral nutrition, intravenous antibiotic therapy, and percutaneous drainage for 4 weeks. An abscessogram performed 1 week later demonstrated a cavity connecting with the second portion of the duodenum, and results of an upper GI series confirmed the presence of a duodenal diverticulum in this location (Figure 3B). The remainder of the hospital course was uneventful.

REVIEW OF LITERATURE

HISTORY AND CAUSES

The duodenum follows the colon as the second most common place for diverticula. They were first described by Chomel in 1710. The prevalence of duodenal diverticula depends on the mode of diagnosis, present in 5% to 10% of barium radiographic series and 22% of autopsy findings. Primary congenital diverticula are extremely rare and are composed of all layers of the intes-
tinal wall. The most frequent type is secondary acquired pseudodiverticula, which contain only mucous and serous layers. They are pulsion diverticula resulting from a combined defect in the duodenal wall and increased intraluminal pressure. As with colonic diverticula, herniation of the mucosa occurs at sites where the muscularis layer is weakened by the passage of blood vessels. Distribution of duodenal diverticula is not uniform, with most occurring along the pancreatic or mesenteric border in the second or third portions of the duodenum. Most are within 2.5 cm of the ampulla of Vater and therefore are referred to as parivaterian diverticula.

Prevalence increases with age and is 10% to 27% in patients older than 50 years. The average age in the present series was 64 (range, 32-94) years (Table 1). Previous studies state that there is no sex predilection, although 41 patients (67%) in our series were female.

CLINICAL PRESENTATION

Duodenal diverticula produce symptoms in 5% to 10% of cases, which may arise from inflammation of the diverticulum, compression of biliopancreatic structures, hemorrhage, or perforation. Compared with their colonic counterparts, duodenal diverticula are believed to be less common sites of inflammation because of their larger size, more rapid intraluminal flow, and smaller bacterial count. Perforation of a diverticulum is one of the most rare and potentially serious complications, first reported in an autopsy by Bassett in 1907. It is thought to occur because of the thin wall present in most diverticulum and is most commonly seen along the medial wall of the second portion of the duodenum within 2 cm of the ampulla of Vater.

Table 2 summarizes the location and causes of perforation in the literature. Perforation arose from diverticula located in the second or the third portion of the duodenum in 60 of 61 cases (98%). Consistent with the previous literature, the most common cause of perforation of a duodenal diverticulum is diverticulitis, seen in 42 patients (69%) in the present series. When all 3 series were combined (Table 2), the most common cause was diverticulitis, seen in 62% of patients (51% vs 1 of 8 [13%]), the result was not statistically significant ($P = .06$).

METHOD OF DIAGNOSIS

Radiologic imaging has been traditionally disregarded as a useful tool in the diagnosis of perforated duodenal diverticulum. Until 1989, only 13 of the reported 101 cases received a correct preoperative diagnosis. In most cases, plain abdominal radiographs did not demonstrate intra-abdominal, retroperitoneal, or paraduodenal air. Upper GI series are able to effectively identify the diverticulum in 80% of cases but are unable to demonstrate extravasation of contrast in most. Ultrasoundography has been used in conjunction with CT but has limited utility as a sole diagnostic modality. The use of multissection helical CT scanners has improved radiologic diagnosis owing to its ability to detect small amounts of gas and fluid in the retroperitoneum. Although some advocate repeated CT or ultrasonographic examination to confirm resolution of the inflammatory process, many patients, including the 4 at our institution, have undergone successful management without repeated radiologic examinations.

Of the 57 patients who received a diagnostic imaging test as the initial examination, 26 (46%) underwent plain abdominal radiography; 24 (42%), CT; 6 (11%), ultrasonography; and 1 (2%), an upper GI series. Computed tomographic scans were used most commonly overall, with 52 patients (85%) receiving one for diagnostic purposes during their hospitalization. The use of varied diagnostic modalities likely reflects the complexity of presentation and the inability to distinguish perforated duodenal diverticulum from other intra-abdominal processes. In addition, the diagnosis is not uniformly clear, with only 16 patients (26%) in the present series receiving a correct diagnosis at the time of admission (Table 3). This finding represents an improvement over previous series, however, because an accurate diagnosis was obtained with the use of radiologic findings in 29 patients (48%) (Table 1).

TREATMENT

Once a perforated duodenal diverticulum has been diagnosed, traditional management has been surgical. Stapled or hand-sewn diverticulectomy (1- or 2-layer closure) with drainage of the retroperitoneal space is the most commonly used repair and was performed in 23 of the 47 operative cases in our series (49%). Use of an omental patch as reinforcement, laparoscopic diverticulectomy, and isolated drainage of retroperitoneum were also reported. More advanced surgical treatment, such as Whipple procedures, were required when significant
<table>
<thead>
<tr>
<th>Source</th>
<th>Sex/Age, y</th>
<th>Chief Presenting Symptom</th>
<th>Location in Duodenum</th>
<th>Method of Diagnosis</th>
<th>Treatment</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present study</td>
<td>F/72</td>
<td>Pain</td>
<td>Second</td>
<td>UGI</td>
<td>Bowel rest, antibiotics<sup>a</sup></td>
<td>None</td>
</tr>
<tr>
<td>Metcalfe et al.</td>
<td>M/58</td>
<td>Pain</td>
<td>Second/third</td>
<td>OR</td>
<td>Diverticulectomy, omental patch</td>
<td>Wound dehiscence</td>
</tr>
<tr>
<td>Lee et al.</td>
<td>F/61</td>
<td>Pain</td>
<td>Second</td>
<td>OR</td>
<td>Laparoscopic diverticulectomy</td>
<td>None</td>
</tr>
<tr>
<td>Voichick et al.</td>
<td>F/52</td>
<td>Pain</td>
<td>Second</td>
<td>OR</td>
<td>Diverticulectomy</td>
<td>None</td>
</tr>
<tr>
<td>Park et al.</td>
<td>F/69</td>
<td>Pain</td>
<td>Second</td>
<td>EGC/CT</td>
<td>Diverticulectomy</td>
<td>None</td>
</tr>
<tr>
<td>López-Zárraga et al.</td>
<td>F/44</td>
<td>Pain</td>
<td>Second</td>
<td>OR</td>
<td>Diverticulectomy</td>
<td>Papilla obstruction, hepaticojunostomy</td>
</tr>
<tr>
<td>Metcalfe et al.</td>
<td>M/58</td>
<td>Pain</td>
<td>Second/third</td>
<td>OR</td>
<td>Diverticulectomy, omental patch</td>
<td>Wound dehiscence</td>
</tr>
<tr>
<td>Lee et al.</td>
<td>F/61</td>
<td>Pain</td>
<td>Second</td>
<td>OR</td>
<td>Laparoscopic diverticulectomy</td>
<td>None</td>
</tr>
<tr>
<td>Voichick et al.</td>
<td>F/52</td>
<td>Pain</td>
<td>Second</td>
<td>OR</td>
<td>Diverticulectomy</td>
<td>None</td>
</tr>
<tr>
<td>Park et al.</td>
<td>F/69</td>
<td>Pain</td>
<td>Second</td>
<td>EGC/CT</td>
<td>Diverticulectomy</td>
<td>None</td>
</tr>
<tr>
<td>López-Zárraga et al.</td>
<td>F/44</td>
<td>Pain</td>
<td>Second</td>
<td>OR</td>
<td>Diverticulectomy</td>
<td>Papilla obstruction, hepaticojunostomy</td>
</tr>
<tr>
<td>Amens et al.</td>
<td>F/52</td>
<td>Pain</td>
<td>Third</td>
<td>OR</td>
<td>OR, not discussed</td>
<td>Prolonged course in 1 patient and 2 deaths overall</td>
</tr>
<tr>
<td>Mekta et al.</td>
<td>F/61</td>
<td>Pain</td>
<td>Second</td>
<td>OR</td>
<td>OR, not discussed</td>
<td>None</td>
</tr>
<tr>
<td>Chen et al.</td>
<td>F/53</td>
<td>Pain</td>
<td>Second</td>
<td>OR</td>
<td>Abscess drainage, jejunostomy</td>
<td>None</td>
</tr>
<tr>
<td>Huang et al.</td>
<td>F/63</td>
<td>Pain</td>
<td>Second</td>
<td>OR/UOI</td>
<td>Diverticulectomy</td>
<td>None</td>
</tr>
<tr>
<td>Andromakos et al.</td>
<td>F/62</td>
<td>Pain</td>
<td>Second</td>
<td>OR</td>
<td>Diverticulectomy</td>
<td>Diversion (arrectomy with None gastroenteric anastomosis)</td>
</tr>
<tr>
<td>Valenzuela Martinez et al.</td>
<td>F/73</td>
<td>Pain</td>
<td>Second</td>
<td>OR</td>
<td>Diverticulectomy</td>
<td>Prolonged course</td>
</tr>
<tr>
<td>Safioleas et al.</td>
<td>M/68</td>
<td>Pain</td>
<td>Second</td>
<td>OR</td>
<td>Drainage, gastrojejunoscopy,</td>
<td>None</td>
</tr>
<tr>
<td>Papamarianos et al.</td>
<td>M/50</td>
<td>Pain</td>
<td>Third</td>
<td>OR</td>
<td>Pyloric exclusion, gastrojejunostomy Multisystem organ failure, fistula</td>
<td></td>
</tr>
<tr>
<td>Miller et al.</td>
<td>F/84</td>
<td>Pain</td>
<td>Third</td>
<td>CT</td>
<td>Primary closure, diversion (pyloric exclusion, gastrojejunostomy)</td>
<td>Sepsis, pneumonia</td>
</tr>
<tr>
<td>Mekta et al.</td>
<td>F/56</td>
<td>Pain</td>
<td>Second</td>
<td>CT</td>
<td>Diverticulectomy</td>
<td>None</td>
</tr>
<tr>
<td>Martin and Amson</td>
<td>M/63</td>
<td>Malaise</td>
<td>Second</td>
<td>CT/UOI</td>
<td>Bowel rest, antibiotics<sup>a</sup></td>
<td>None</td>
</tr>
<tr>
<td>Lee et al.</td>
<td>F/74</td>
<td>Pain</td>
<td>Second</td>
<td>OR</td>
<td>Roux-en-Y duodenojejunostomy</td>
<td>None</td>
</tr>
<tr>
<td>Bergman et al.</td>
<td>F/82</td>
<td>Pain</td>
<td>Second</td>
<td>CT</td>
<td>Diverticulectomy</td>
<td>None</td>
</tr>
<tr>
<td>Yokomoro et al.</td>
<td>F/88</td>
<td>Pain</td>
<td>Second</td>
<td>OR</td>
<td>Primary closure</td>
<td>None</td>
</tr>
<tr>
<td>Sakurai et al.</td>
<td>F/81</td>
<td>Pain</td>
<td>Second</td>
<td>OR/UOI</td>
<td>Diverticulectomy, omental patch</td>
<td>None</td>
</tr>
<tr>
<td>Yarza et al.</td>
<td>F/89</td>
<td>Pain</td>
<td>Second</td>
<td>OR</td>
<td>Bowel rest, antibiotics<sup>a</sup></td>
<td>None</td>
</tr>
<tr>
<td>Franz et al.</td>
<td>M/59</td>
<td>Pain</td>
<td>Second</td>
<td>OR</td>
<td>Diverticulectomy</td>
<td>None</td>
</tr>
<tr>
<td>Atman et al.</td>
<td>F/83</td>
<td>Trauma</td>
<td>Second</td>
<td>CT/UOI</td>
<td>Diverticulectomy, lateral</td>
<td>None</td>
</tr>
<tr>
<td>Guolutt et al.</td>
<td>F/88</td>
<td>Pain</td>
<td>Second</td>
<td>OR</td>
<td>Diverticulectomy, gastrojejunostomy</td>
<td>Sepsis, pneumonia</td>
</tr>
<tr>
<td>Eckhoff et al.</td>
<td>F/49</td>
<td>Pain</td>
<td>Second</td>
<td>CT</td>
<td>Bowel rest, antibiotics, percutaneous drain<sup>a</sup></td>
<td>None</td>
</tr>
<tr>
<td>Tsukamoto et al.</td>
<td>F/85</td>
<td>Pain</td>
<td>Second</td>
<td>OR</td>
<td>Diverticulectomy</td>
<td>None</td>
</tr>
<tr>
<td>Rao et al.</td>
<td>F/66</td>
<td>Pain</td>
<td>Second</td>
<td>EGD</td>
<td>Endoscopic lithotomy, percutaneous drain<sup>a</sup></td>
<td>None</td>
</tr>
<tr>
<td>Poostizadeh et al.</td>
<td>M/50</td>
<td>Pain</td>
<td>Third</td>
<td>CT</td>
<td>OR</td>
<td>X</td>
</tr>
<tr>
<td>Cavanagh et al.</td>
<td>F/82</td>
<td>Pain</td>
<td>Second/third</td>
<td>US</td>
<td>Diverticulectomy</td>
<td>None</td>
</tr>
<tr>
<td>Cavanagh et al.</td>
<td>F/78</td>
<td>Pain</td>
<td>Second/third</td>
<td>OR</td>
<td>Diverticulectomy, gastroscopy</td>
<td>Death: ruptured PA</td>
</tr>
<tr>
<td>Poostizadeh et al.</td>
<td>M/41</td>
<td>Pain</td>
<td>Second</td>
<td>US</td>
<td>Diverticulectomy</td>
<td>None</td>
</tr>
<tr>
<td>Cavanagh et al.</td>
<td>F/81</td>
<td>Pain</td>
<td>Second</td>
<td>US</td>
<td>Diverticulectomy</td>
<td>None</td>
</tr>
<tr>
<td>Poostizadeh et al.</td>
<td>M/71</td>
<td>Jaundice</td>
<td>Second</td>
<td>Fluoro</td>
<td>Malecot drainage in diverticulum PE, thrombophlebitis</td>
<td></td>
</tr>
<tr>
<td>Poostizadeh et al.</td>
<td>M/72</td>
<td>Pain</td>
<td>Second</td>
<td>Autopsy</td>
<td>Appendectomy, drainage, Sepsis/death</td>
<td></td>
</tr>
<tr>
<td>Poostizadeh et al.</td>
<td>F/69</td>
<td>Pain</td>
<td>Second</td>
<td>OR</td>
<td>Diverticulectomy</td>
<td>None</td>
</tr>
<tr>
<td>Poostizadeh et al.</td>
<td>M/51</td>
<td>Shock</td>
<td>Third</td>
<td>OR</td>
<td>Diverticulectomy</td>
<td>Sepsis/shock</td>
</tr>
<tr>
<td>Poostizadeh et al.</td>
<td>F/82</td>
<td>Pain</td>
<td>Second</td>
<td>Pneumonia</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Poostizadeh et al.</td>
<td>F/73</td>
<td>Dysepan</td>
<td>Second</td>
<td>ERCP</td>
<td>Stent removal<sup>a</sup></td>
<td>None</td>
</tr>
<tr>
<td>Poostizadeh et al.</td>
<td>F/83</td>
<td>Pain</td>
<td>Second</td>
<td>OR</td>
<td>Cholecystectomy, T tube, drainage</td>
<td>Recurrence</td>
</tr>
<tr>
<td>Poostizadeh et al.</td>
<td>F/74</td>
<td>Pain</td>
<td>Second</td>
<td>OR</td>
<td>Aspiration/drainage</td>
<td>None</td>
</tr>
<tr>
<td>Poostizadeh et al.</td>
<td>F/83</td>
<td>Pain</td>
<td>Second</td>
<td>OR</td>
<td>Drainage, T tube</td>
<td>None</td>
</tr>
<tr>
<td>Poostizadeh et al.</td>
<td>M/32</td>
<td>Pain</td>
<td>Third</td>
<td>OR</td>
<td>Drainage</td>
<td>None</td>
</tr>
<tr>
<td>Poostizadeh et al.</td>
<td>F/46</td>
<td>Shock</td>
<td>Second/third</td>
<td>OR</td>
<td>Drainage</td>
<td>High-output fistula</td>
</tr>
</tbody>
</table>

Abbreviations: CT, computerized tomography; EGD, esophagogastroduodenoscopy; ERCP, endoscopic retrograde cholangiopancreatography; Fluoro, fluoroscopy; OR, operating room; PA, pulmonary artery; PE, pulmonary embolism; PTC, percutaneous transhepatic cholangiogram; RP, retroperitoneum; UGI, upper gastrointestinal tract series; US, ultrasonography; X, unknown.

^aIndicates nonoperative management.
The operative strategy used, careful attention should be directed to the location of the diverticulum with respect to the biliary system. This is accomplished by placing a Fogarty balloon catheter into the duodenum via a choledochotomy or cholecystotomy, enabling the surgeon to safely identify the ampulla of Vater.13,20

Shackleton55 first reported nonoperative management of perforated duodenal diverticulum in 1963. Only 5 other cases were reported from 1963 to 1989,4,55-57 and 2 of these patients had duodenocolic fistulas.57 Conservative management was initially reserved for patients at high risk for surgical intervention, such as those with advanced age and/or significant comorbid conditions. In the present series, 14 patients (23%) were successfully treated without operative intervention (Table 1). Nonoperative management included bowel rest with or without nasogastric suction, intravenous fluid hydration, intravenous antibiotic therapy, and initiation of total parenteral nutrition when a prolonged course was anticipated.13 The clinical condition and hemodynamic stability of the patient should guide therapeutic management. Patients presenting in extremis with peritoneal signs and intra-abdominal sepsis should be taken promptly for operative intervention.13 Most patients will present with less impressive clinical signs. Initiation of bowel rest, intravenous hydration, and parenteral antibiotics should be prompt, with close clinical observation and frequent physical examination to detect evidence of disease progression. In the case of deterioration or diagnostic uncertainty, operative treatment must be used.

OUTCOMES

The mortality rate in the original series of perforated duodenal diverticula from 1907 to 1969 was 34%,2 with a decrease to 13% from 1969 to 1989.3 There were 5 total deaths in our series, for a mortality rate of 8%. The management strategy was not identifiable in 2 patients who died,12 and the remaining 3 deaths were in patients who underwent surgical management. The progressive decrease in mortality since 1907 may represent improvement in perioperative care, development of broad-spectrum antibiotics, advances in diagnostic tests, and/or increased awareness of this rare entity. Other complications, such as duodenal fistulas, intra-abdominal abscesses, sepsis, and wound infections, occurred in nearly half the patients before 1989.2,3 In the present series, complications were reported in 20 of 61 (33%). In the subset of patients undergoing nonoperative management, only 1 complication was reported with development of an intra-abdominal abscess treated successfully with percutaneous drainage. Unfortunately, because diverticular perforations were identified from case reports and small case series, long-term outcome data were unavailable.

CONCLUSIONS

Although duodenal diverticula are common entities, sequelae such as perforation remain rare complications, with only 162 cases reported in the world literature. A high index of suspicion is required for timely correct diagnosis because signs and symptoms often mimic other intra-abdominal processes. Although nonoperative management was initially reserved for patients with advanced age and significant comorbid conditions, improvements in critical care have allowed nonoperative management to be a practical alternative to surgery in selected patients.

Accepted for Publication: July 20, 2011.
REFERENCES

Experience Be a Jewel

Thorson et al describe 4 cases of perforated duodenal diverticula that they successfully managed nonoperatively and also present an update of the world literature on the subject. Their report is quite helpful as an encouragement to surgeons who encounter this uncommon entity to try the nonoperative approach. Although the authors were wise not to extrapolate too much from the series of case reports, one wonders what factors contribute to successful nonoperative management. Their review found no significant difference in clinical presentations of the operative compared with the nonoperative groups. This finding is not surprising because duodenal diverticular perforations are difficult to distinguish from other more common upper abdominal conditions. Once again, the multisection helical computed tomography scan makes the diagnosis. Perhaps the finding of peritonitis on examination should prompt operative intervention; however, the authors also found that the observed rate of peritonitis was not statistically different between the operative and nonoperative groups. Can we really believe statistics performed on case reports? I don’t think the authors believe it either because they still advise that patients with peritoneal signs and sepsis should be taken “promptly for operative intervention.” That is good surgical common sense speaking. With their track record of successful nonoperative experience, I’m listening.

I congratulate the authors on an interesting and thoughtful review of perforated duodenal diverticula. I feel a little more comfortable considering a nonoperative strategy next time I encounter this problem.

Patricia Eubanks May, MD

Author Affiliation: Department of Surgery, Veterans Affairs Sierra Nevada Health Care System, Reno.

Correspondence: Dr May, Department of Surgery, Veterans Affairs Sierra Nevada Health Care System, 975 Kirman Ave (112), Reno, NV 89502-2597 (patricia.may@va.gov).

Financial Disclosure: None reported.