Reporting of Sex as a Variable in Research Published in Surgical Journals

Melina R. Kibbe, MD

Conducting sex-inclusive biomedical and clinical research is imperative to improving the health outcomes of women and men.1 (Note that the word sex is being used rather than the term gender. Sex is the genotype that an individual is born with, and gender is the phenotype. For most research, it is the chromosomal sex of the human, animal, tissue, or cell that is important.) Recent studies have shown that most biomedical research in the field of surgery and associated topics is conducted on male animals and male cells, even when the diseases being studied are prevalent in females.2 Human clinical research is challenged by a lack of sex-based reporting and sex-based analysis of study results.3,4 Given these findings, the National Institutes of Health has asked that sex be considered as a biologic variable in all National Institutes of Health-funded research.5

The surgical journals whose editors are members of the Surgery Journals Editors Group will require this information in their journals. As such, defined reporting of the sex used for human, animal, tissue, and cell research in all articles published in JAMA Surgery is required.6 This information can be collected by self-report, administrative data, or (less commonly) genetic evaluation. If only 1 sex is studied, authors must include a justification statement as to why a single-sex study was conducted. Sex-based analysis of data for all human, animal, tissue, and cell research is also required.

REFERENCES

Multitiered Questions Regarding Multigene Testing for Cancer Susceptibility

Lisa A. Newman, MD, MPH

Expert consensus statements are most helpful when they provide a model for handling questions that arise frequently in clinical practice but for which high-level evidence is lacking. Following the 2013 Supreme Court ruling that invalidated gene patenting,1 there has been a veritable explosion of information regarding a broad spectrum of cancer susceptibility-related genes, some with high penetrance and others with moderate/low risk. Moreover, extent of pathogenicity varies by mutation in each gene. Detecting a deleterious mutation in a high-penetrance gene, such as BRCA1 or BRCA2, can provide patients with opportunities to consider prophylactic oophorectomy for its potential longevity benefits or prophylactic mastectomy for its potential risk-reducing benefits.2 Indeed, existing knowledge regarding actionable mutations has prompted some investigators to recommend population-based testing for patho-

Related article at jama.com