In Reply We thank Ilhan and Hush for their valuable comments in response to our recent Research Letter on postoperative opioid expectations in pediatric patients and would like to address their concerns. While children are at risk of developing opioid dependence after prescription of perioperative opioids, the risk of underrecognition and undertreatment of pain in children must be taken into account. We agree with Ilhan and Hush that appropriate evaluation and management of perioperative pain in pediatric patients is vital. However, we do not believe that aiming for an opioid-free recovery after specific pediatric surgeries compromises this shared goal.

Recent pediatric surgical literature has emphasized the potential risks associated with postoperative opioid use and the potential for nonopioid pain control after many operations. We suspect this affected the opinions of pediatric surgeons in our study. However, it is critical to recognize opioid-free postoperative pain management cannot be achieved without caregiver and patient involvement and education. We support the recently published guidelines for opioid prescribing in children and adolescents, which state that opioid-free postoperative analgesia is feasible for many pediatric operations and that caregivers and children should be educated about expectations and methods of pain management before the day of surgery and again perioperatively. In our survey, we elected to collect data on the frequency of pain management discussions by pediatric surgeons, surgical residents, and nurses to better understand which groups are currently providing this education to families. As Ilhan and Hush detail, we found that most pediatric surgeons and surgical residents did not discuss alternative pain management strategies with patients and their families.

In developing opioid-free perioperative pain management protocols for children, incorporation of family education is critical. Comprehensive caregiver education with inclusion of nonpharmacologic interventions can improve postoperative pain management. However, surgeons and residents typically do not devote significant time to this discussion. Evaluation of pain and patient education is routinely incorporated into nursing education but is less emphasized in surgical residency training. The results of our study illustrate the need for a standardized preoperative pain management discussion and educational pain management videos for families, and we have incorporated these interventions into our opioid reduction efforts. We support a multidisciplinary approach to postoperative pediatric pain management to ensure children’s pain is cared for without excessive use of opioids.

Sarah C. Stokes, MD
Payam Saadai, MD

Author Affiliations: Department of Surgery, University of California, Davis, Sacramento.

Corresponding Author: Sarah C. Stokes, MD, Department of Surgery, University of California, Davis, 2335 Stockton Blvd, Room 5107, Sacramento, CA 95817 (scstokes@ucdavis.edu).

Published Online: December 1, 2021. doi:10.1001/jamasurg.2021.6254

Conflict of Interest Disclosures: None reported.


CORRECTION

Error in Table: The Original Investigation titled “Patient- and Surgeon-Level Variation in Patient-Reported Sexual Function Outcomes Following Radical Prostatectomy Over 2 Years: Results From a Statewide Surgical Improvement Collaborative,” published online December 1, 2021, was corrected to fix a typographical error in the title. This article was corrected online.


Error in Abstract: The Original Investigation titled “Comparing Veterans Affairs and Private Sector Perioperative Outcomes After Noncardiac Surgery,” published on December 29, 2021, was corrected to fix a reversal of sample sizes in the Results section of the Abstract. The phrase “Of 3 910 752 operations (3 174 274 from VASQIP and 736 477 from NSQIP), 1 498 984 (47.2%) participants in VASQIP were male vs 678 382 (92.1%) in NSQIP” was revised to “Of 3 910 752 operations (3 174 274 from NSQIP and 736 477 from VASQIP), 1 498 984 (47.2%) participants in NSQIP were male vs 678 382 (92.1%) in VASQIP.” This article was corrected online.