[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address Please contact the publisher to request reinstatement.
[Skip to Content Landing]
Original Article
October 1998

Acute Effects of Intermittent Pneumatic Compression on Popliteal Artery Blood Flow

Author Affiliations

From the Department of Surgery, Loyola University Medical Center, Maywood, Ill.

Arch Surg. 1998;133(10):1072-1075. doi:10.1001/archsurg.133.10.1072

Objectives  To investigate the immediate effects of intermittent pneumatic foot and calf compression (IPFCC) on popliteal artery blood flow in symptom-free volunteers and to determine the reproducibility of color flow duplex imaging in the popliteal artery.

Design  Cohort study.

Setting  A university associated tertiary care hospital.

Patients  Forty lower limbs of 30 volunteers without symptoms or noteworthy risk factors of peripheral vascular disease.

Interventions  Popliteal artery blood flow was measured in the sitting position before, during, and after the application of IPFCC using color flow duplex imaging. The interobserver, intraobserver, and between occasion within-subject variability of the popliteal artery blood flow were evaluated in 5 symptom-free volunteers who had at least 5 color flow duplex imaging measurements taken at each of the above time points on 3 different days.

Main Outcome Measures  The arterial diameter, peak systolic, end diastolic, and reverse-flow velocities were measured, as well as the duration of forward flow during diastole before, during, and after IPFCC. The same variables were measured in 5 separate volunteers by 3 different observers, on 3 separate days, at 3 separate times to determine reproducibility.

Results  Including all types of variability, the popliteal artery blood flow varied from 8% to 39% with a mean value of 19%. Since the diameter of the artery was obtained with less than 5% variability, the time average mean velocity was responsible for the high variation in flow. During application of the IPFCC, the popliteal artery blood flow increased significantly in all subjects (P<.001). The mean increase in the flow was 2.4 times the baseline values. The diameter of the arteries remained unchanged while the time average velocity increased significantly (P<.001). This velocity increase was due to marked elevation in the peak systolic and end diastolic velocities and diminution of the reverse-flow component, as well as a prolongation of the forward flow during diastole. After cessation of the pump, flow returned to baseline levels (P=.41)

Conclusions  Ultrasound-derived popliteal artery blood flow measurements show moderate variability. The application of IPFCC greatly enhances popliteal artery blood flow. The flow increase is due to a dramatic drop in the peripheral vascular resistance as the peak systolic and end diastolic flow velocities increase and the reverse-flow component diminishes. Its role in the treatment of lower extremity occlusive arterial disease needs to be determined.