[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.173.234.140. Please contact the publisher to request reinstatement.
[Skip to Content Landing]
1.
Clement  ND, Breusch  SJ, Biant  LC.  Lower limb joint replacement in rheumatoid arthritis.  J Orthop Surg Res. 2012;7:27.PubMedGoogle ScholarCrossref
2.
Bohensky  M, Ackerman  I, de Steiger  R, Gorelik  A, Brand  C.  Lifetime risk of total hip replacement surgery and temporal trends in utilization: a population-based analysis.  Arthritis Care Res (Hoboken). 2014;66(8):1213-1219.PubMedGoogle ScholarCrossref
3.
Nemes  S, Gordon  M, Rogmark  C, Rolfson  O.  Projections of total hip replacement in Sweden from 2013 to 2030.  Acta Orthop. 2014;85(3):238-243.PubMedGoogle ScholarCrossref
4.
Villanueva-Martınez  M, Hernandez-Barrera  V, Chana-Rodríguez  F,  et al.  Trends in incidence and outcomes of revision total hip arthroplasty in Spain: a population based study.  BMC Musculoskelet Disord. 2012;13:37.PubMedGoogle ScholarCrossref
5.
Australian Orthopaedic Association–National Joint Replacement Registry. Australian Orthopaedic Association–National Joint Replacement Registry: annual report 2014. https://aoanjrr.dmac.adelaide.edu.au/documents/10180/172286/Annual%20Report%202014. Accessed October 15, 2014.
6.
Canadian Institute for Health Information.  Hip and knee replacements in Canada: Canadian Joint Replacement Registry 2014 Annual Report.https://secure.cihi.ca/free_products/CJRR%202014%20Annual%20Report_EN-web.pdf. Accessed October 15, 2014.
7.
 Centre of Excellence of Joint Replacements. Nasjonalt Register for Leddproteser: report June 2010. http://nrlweb.ihelse.net/eng/Report_2010.pdf. Accessed October 15, 2014.
9.
Netherlands Orthopaedic Association.  Insight into quality of orthopaedic care in the Netherlands - annual report of the Dutch Arthroplasty Register (Landelijke Registratie Orthopedische Implantaten). 2012. http://www.lroi.nl/uploads/dd/hs/ddhsXrrhkkSoA_vpBMBMKA/LROI-report-Executive-summary-Insight-into-quality-of-orthopaedic-care-in-the-Netherlands.pdf. Accessed October 15, 2014.
10.
 New Zealand Joint Registry. The New Zealand Joint Registry—14-year report—January 1999 to December 2012. http://www.nzoa.org.nz/system/files/NJR%2014%20Year%20Report.pdf. Accessed October 15, 2014.
11.
 Swedish Hip Arthroplasty Register. Swedish Hip Arthroplasty Register annual report 2012. http://www.shpr.se/en/Publications/DocumentsReports.aspx. Accessed October 15, 2014.
12.
Labek  G, Thaler  M, Janda  W, Agreiter  M, Stöckl  B.  Revision rates after total joint replacement: cumulative results from worldwide joint register datasets.  J Bone Joint Surg Br. 2011;93(3):293-297.PubMedGoogle ScholarCrossref
13.
Corbett  KL, Losina  E, Nti  AA, Prokopetz  JJZ, Katz  JN.  Population-based rates of revision of primary total hip arthroplasty: a systematic review.  PLoS One. 2010;5(10):e13520.PubMedGoogle ScholarCrossref
14.
Philpott  A, Weston-Simons  JS, Grammatopoulos  G,  et al.  Predictive outcomes of revision total hip replacement—a consecutive series of 1176 patients with a minimum 10-year follow-up.  Maturitas. 2014;77(2):185-190.PubMedGoogle ScholarCrossref
15.
Lui  DF, Bandorf  N, Riordan  P, Jaweesh  O, Duru  B, Bennett  D.  Preoperative comorbidity and modes of failure in revision hip arthroplasty: a single-surgeon series in a tertiary referral centre.  Eur J Orthop Surg Traumatol. 2013;23(3):329-333.PubMedGoogle ScholarCrossref
16.
Wolf  BR, Lu  X, Li  Y, Callaghan  JJ, Cram  P.  Adverse outcomes in hip arthroplasty: long-term trends.  J Bone Joint Surg Am. 2012;94(14):e103.PubMedGoogle ScholarCrossref
17.
Hailer  NP, Garellick  G, Kärrholm  J.  Uncemented and cemented primary total hip arthroplasty in the Swedish Hip Arthroplasty Register.  Acta Orthop. 2010;81(1):34-41.PubMedGoogle ScholarCrossref
18.
Morshed  S, Bozic  KJ, Ries  MD, Malchau  H, Colford  JM  Jr.  Comparison of cemented and uncemented fixation in total hip replacement: a meta-analysis.  Acta Orthop. 2007;78(3):315-326.PubMedGoogle ScholarCrossref
19.
Sibanda  N, Copley  LP, Lewsey  JD,  et al; Steering Committee of the National Joint Registry (NJR) for England and Wales.  Revision rates after primary hip and knee replacement in England between 2003 and 2006.  PLoS Med. 2008;5(9):e179.PubMedGoogle ScholarCrossref
20.
Mäkelä  KT, Matilainen  M, Pulkkinen  P,  et al.  Failure rate of cemented and uncemented total hip replacements: register study of combined Nordic database of four nations.  BMJ. 2014;348:f7592.PubMedGoogle ScholarCrossref
21.
Troelsen  A, Malchau  E, Sillesen  N, Malchau  H.  A review of current fixation use and registry outcomes in total hip arthroplasty: the uncemented paradox.  Clin Orthop Relat Res. 2013;471(7):2052-2059.PubMedGoogle ScholarCrossref
22.
Corten  K, Bourne  RB, Charron  KD, Au  K, Rorabeck  CH.  What works best, a cemented or cementless primary total hip arthroplasty? minimum 17-year followup of a randomized controlled trial.  Clin Orthop Relat Res. 2011;469(1):209-217.PubMedGoogle ScholarCrossref
23.
Parvizi  J, Saleh  KJ, Ragland  PS, Pour  AE, Mont  MA.  Efficacy of antibiotic-impregnated cement in total hip replacement.  Acta Orthop. 2008;79(3):335-341.PubMedGoogle ScholarCrossref
24.
Wang  J, Zhu  C, Cheng  T,  et al.  A systematic review and meta-analysis of antibiotic-impregnated bone cement use in primary total hip or knee arthroplasty.  PLoS One. 2013;8(12):e82745.PubMedGoogle ScholarCrossref
25.
Topolovec  M, Milošev  I.  A comparative study of four bearing couples of the same acetabular and femoral component: a mean follow-up of 11.5 years.  J Arthroplasty. 2014;29(1):176-180.PubMedGoogle ScholarCrossref
26.
Kim  Y-H, Park  J-W, Kulkarni  SS, Kim  Y-H.  A randomised prospective evaluation of ceramic-on-ceramic and ceramic-on-highly cross-linked polyethylene bearings in the same patients with primary cementless total hip arthroplasty.  Int Orthop. 2013;37(11):2131-2137.PubMedGoogle ScholarCrossref
27.
Neumann  A, Weill  A, Ricordeau  P, Fagot  JP, Alla  F, Allemand  H.  Pioglitazone and risk of bladder cancer among diabetic patients in France: a population-based cohort study.  Diabetologia. 2012;55(7):1953-1962.PubMedGoogle ScholarCrossref
28.
Fagot  J-P, Blotière  P-O, Ricordeau  P, Weill  A, Alla  F, Allemand  H.  Does insulin glargine increase the risk of cancer compared with other basal insulins? a French nationwide cohort study based on national administrative databases.  Diabetes Care. 2013;36(2):294-301.PubMedGoogle ScholarCrossref
29.
Romon  I, Rey  G, Mandereau-Bruno  L,  et al.  The excess mortality related to cardiovascular diseases and cancer among adults pharmacologically treated for diabetes: the 2001-2006 ENTRED cohort.  Diabet Med. 2014;31(8):946-953.PubMedGoogle ScholarCrossref
30.
Bouillon  K, Bertrand  M, Maura  G, Blotière  P-O, Ricordeau  P, Zureik  M.  Risk of bleeding and arterial thromboembolism in patients with non-valvular atrial fibrillation either maintained on a vitamin K antagonist or switched to a non-vitamin K-antagonist oral anticoagulant: a retrospective, matched-cohort study.  Lancet Haematol. 2015;2: e150–159. http://dx.doi.org/10.1016/S2352-3026(15)00027-7PubMedGoogle ScholarCrossref
31.
Racine  A, Cuerq  A, Bijon  A,  et al.  Isotretinoin and risk of inflammatory bowel disease: a French nationwide study.  Am J Gastroenterol. 2014;109(4):563-569.PubMedGoogle ScholarCrossref
32.
Tiv  M, Viel  J-F, Mauny  F,  et al.  Medication adherence in type 2 diabetes: the ENTRED study 2007, a French Population-Based Study.  PLoS One. 2012;7(3):e32412.PubMedGoogle ScholarCrossref
33.
Tuppin  P, Cuerq  A, de Peretti  C,  et al.  Two-year outcome of patients after a first hospitalization for heart failure: a national observational study.  Arch Cardiovasc Dis. 2014;107(3):158-168.PubMedGoogle ScholarCrossref
34.
Martin-Latry  K, Bégaud  B.  Pharmacoepidemiological research using French reimbursement databases: yes we can!  Pharmacoepidemiol Drug Saf. 2010;19(3):256-265.PubMedGoogle ScholarCrossref
35.
Bozic  KJ, Lau  E, Ong  K,  et al.  Risk factors for early revision after primary total hip arthroplasty in Medicare patients.  Clin Orthop Relat Res. 2014;472(2):449-454.PubMedGoogle ScholarCrossref
36.
Dy  CJ, Bozic  KJ, Pan  TJ, Wright  TM, Padgett  DE, Lyman  S.  Risk factors for early revision after total hip arthroplasty.  Arthritis Care Res (Hoboken). 2014;66(6):907-915.PubMedGoogle ScholarCrossref
37.
Prokopetz  JJ, Losina  E, Bliss  RL, Wright  J, Baron  JA, Katz  JN.  Risk factors for revision of primary total hip arthroplasty: a systematic review.  BMC Musculoskelet Disord. 2012;13:251.PubMedGoogle ScholarCrossref
38.
Ravi  B, Jenkinson  R, Austin  PC,  et al.  Relation between surgeon volume and risk of complications after total hip arthroplasty: propensity score matched cohort study.  BMJ. 2014;348:g3284.PubMedGoogle ScholarCrossref
39.
Judge  A, Chard  J, Learmonth  I, Dieppe  P.  The effects of surgical volumes and training centre status on outcomes following total joint replacement: analysis of the Hospital Episode Statistics for England.  J Public Health (Oxf). 2006;28(2):116-124.PubMedGoogle ScholarCrossref
40.
Rey  G, Jougla  E, Fouillet  A, Hémon  D.  Ecological association between a deprivation index and mortality in France over the period 1997—2001: variations with spatial scale, degree of urbanicity, age, gender and cause of death.  BMC Public Health. 2009;9:33.PubMedGoogle ScholarCrossref
41.
Lie  SA, Engesaeter  LB, Havelin  LI, Gjessing  HK, Vollset  SE.  Mortality after total hip replacement: 0-10-year follow-up of 39,543 patients in the Norwegian Arthroplasty Register.  Acta Orthop Scand. 2000;71(1):19-27.PubMedGoogle ScholarCrossref
42.
Gillam  MH, Salter  A, Ryan  P, Graves  SE.  Different competing risks models applied to data from the Australian Orthopaedic Association National Joint Replacement Registry.  Acta Orthop. 2011;82(5):513-520.PubMedGoogle ScholarCrossref
43.
Fine  JP, Gray  RJ.  A proportional hazards model for the subdistribution of a competing risk.  J Am Stat Assoc. 1999;94(446):496-509.Google ScholarCrossref
44.
Ranstam  J.  Problems in orthopedic research: dependent observations.  Acta Orthop Scand. 2002;73(4):447-450.PubMedGoogle ScholarCrossref
45.
Stea  S, Comfort  T, Sedrakyan  A,  et al.  Multinational comprehensive evaluation of the fixation method used in hip replacement: interaction with age in context.  J Bone Joint Surg Am. 2014;96(suppl 1):42-51.PubMedGoogle ScholarCrossref
46.
Moritz  N, Alm  JJ, Lankinen  P, Mäkinen  TJ, Mattila  K, Aro  HT.  Quality of intertrochanteric cancellous bone as predictor of femoral stem RSA migration in cementless total hip arthroplasty.  J Biomech. 2011;44(2):221-227.PubMedGoogle ScholarCrossref
47.
Aro  HT, Alm  JJ, Moritz  N, Mäkinen  TJ, Lankinen  P.  Low BMD affects initial stability and delays stem osseointegration in cementless total hip arthroplasty in women: a 2-year RSA study of 39 patients.  Acta Orthop. 2012;83(2):107-114.PubMedGoogle ScholarCrossref
48.
Hartikainen  S, Lönnroos  E.  Systematic review: use of sedatives and hypnotics, antidepressants and benzodiazepines in older people significantly increases their risk of falls.  Evid Based Med. 2010;15(2):59.PubMedGoogle ScholarCrossref
49.
Wylde  V, Blom  AW.  The failure of survivorship.  J Bone Joint Surg Br. 2011;93(5):569-570.PubMedGoogle ScholarCrossref
50.
Robertsson  O, Ranstam  J.  No bias of ignored bilaterality when analysing the revision risk of knee prostheses: analysis of a population based sample of 44,590 patients with 55,298 knee prostheses from the national Swedish Knee Arthroplasty Register.  BMC Musculoskelet Disord. 2003;4:1.PubMedGoogle ScholarCrossref
51.
Amlie  E, Havelin  LI, Furnes  O,  et al.  Worse patient-reported outcome after lateral approach than after anterior and posterolateral approach in primary hip arthroplasty: a cross-sectional questionnaire study of 1,476 patients 1-3 years after surgery.  Acta Orthop. 2014;85(5):463-469.PubMedGoogle ScholarCrossref
52.
Choy  GGH, Roe  JA, Whitehouse  SL, Cashman  KS, Crawford  RW.  Exeter short stems compared with standard length Exeter stems: experience from the Australian Orthopaedic Association National Joint Replacement Registry.  J Arthroplasty. 2013;28(1):103-109.e1.PubMedGoogle ScholarCrossref
53.
Kim  Y-H, Park  J-W, Kim  J-S.  Behaviour of the ultra-short anatomic cementless femoral stem in young and elderly patients.  Int Orthop. 2013;37(12):2323-2330.PubMedGoogle ScholarCrossref
54.
van Oldenrijk  J, Molleman  J, Klaver  M, Poolman  RW, Haverkamp  D.  Revision rate after short-stem total hip arthroplasty: a systematic review of 49 studies.  Acta Orthop. 2014;85(3):250-258.PubMedGoogle ScholarCrossref
55.
Wittenberg  RH, Steffen  R, Windhagen  H, Bücking  P, Wilcke  A.  Five-year results of a cementless short-hip-stem prosthesis.  Orthop Rev (Pavia). 2013;5(1):e4.PubMedGoogle ScholarCrossref
56.
Jameson  SS, Baker  PN, Mason  J,  et al.  The design of the acetabular component and size of the femoral head influence the risk of revision following 34 721 single-brand cemented hip replacements: a retrospective cohort study of medium-term data from a National Joint Registry.  J Bone Joint Surg Br. 2012;94(12):1611-1617.PubMedGoogle ScholarCrossref
57.
Mäkelä  K.  Primary total hip arthroplasty for primary osteoarthritis in Finland: a national register based analysis. 2010. https://helda.helsinki.fi/handle/10138/22460. Accessed October 15, 2014.
58.
Cummins  JS, Tomek  IM, Kantor  SR, Furnes  O, Engesaeter  LB, Finlayson  SRG.  Cost-effectiveness of antibiotic-impregnated bone cement used in primary total hip arthroplasty.  J Bone Joint Surg Am. 2009;91(3):634-641.PubMedGoogle ScholarCrossref
59.
Merollini  KMD, Crawford  RW, Whitehouse  SL, Graves  N.  Surgical site infection prevention following total hip arthroplasty in Australia: a cost-effectiveness analysis.  Am J Infect Control. 2013;41(9):803-809.PubMedGoogle ScholarCrossref
60.
Gutowski  CJ, Zmistowski  BM, Clyde  CT, Parvizi  J.  The economics of using prophylactic antibiotic-loaded bone cement in total knee replacement.  Bone Joint J. 2014;96-B(1):65-69.PubMedGoogle ScholarCrossref
Original Investigation
October 2015

Association Between Total Hip Replacement Characteristics and 3-Year Prosthetic Survivorship : A Population-Based Study

Author Affiliations
  • 1Department of Epidemiology of Health Products, French National Agency for Medicines and Health Products Safety (ANSM), Saint-Denis, France
  • 2Department of Health Science, University Simone Veil, Saint-Quentin-en-Yvelines, France
JAMA Surg. 2015;150(10):979-988. doi:10.1001/jamasurg.2015.1325
Abstract

Importance  Total hip replacement (THR) is successful in treating hip arthritis. Prosthetic survivorship may depend on characteristics of the implant, notably THR fixation technique and bearing surface type.

Objective  To compare THR short-term survivorship according to cement type and bearing surface.

Design, Setting, and Participants  The cohort included all French patients aged 40 years or older covered by the general scheme of the French national health insurance system who had undergone THR from April 1, 2010, through December 31, 2011, for arthritis, according to French national health insurance databases. The cohort was followed up until December 31, 2013. The THR survivorship was assessed according to cement type and bearing surface in univariate and multivariate Cox proportional hazards regression models adjusted for patient and implanting center characteristics.

Exposures  Antibiotic-free cemented THRs and antibiotic-impregnated cemented THRs were compared with uncemented THRs. Ceramic-on-ceramic (CoC), ceramic-on-polyethylene (CoP), and metal-on-metal (MoM) THRs were compared with metal-on-polyethylene (MoP) THRs.

Main Outcomes and Measures  Revision, including any surgical reintervention in which the implant or any of its components was changed or removed.

Results  The study cohort comprised 100 191 individuals: mean age at baseline, 69.5 years; women, 56.6%; uncemented THR, 74.8%; antibiotic-free cemented THR, 3.8%; antibiotic-impregnated cemented THR, 21.4%; CoC, 40.9%; MoP, 33.9%; CoP, 20.8%; and MoM, 4.4%. During the median 33-month follow-up period, 3142 individuals underwent prosthetic revision. Antibiotic-impregnated cemented THRs had a better prognosis than uncemented THRs: cumulative revision rates were 2.4% and 3.3%, respectively (P < .001), and the multivariate adjusted hazard ratio was 0.75 (95% CI, 0.67-0.84; P < .001). This association was particularly significant in women. The CoP and CoC THRs were no different from the MoP THR. The MoM THR had slightly shorter survivorship compared with the MoP THR (adjusted hazard ratio, 1.20; 95% CI, 1.01-1.43; P < .001).

Conclusions and Relevance  Characteristics of THR are related to early prosthetic revision: antibiotic-impregnated cemented THRs have a better prognosis and MoM THRs a worse one. These findings are useful in helping surgeons select a THR fixation technique and helpful for both patient and surgeon in the decision-making process.

×