Use of Metabolomics to Trend Recovery and Therapy After Injury in Critically Ill Trauma Patients | Trauma and Injury | JAMA Surgery | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.204.227.34. Please contact the publisher to request reinstatement.
1.
Tanaka  H.  Omics-based medicine and systems pathology: a new perspective for personalized and predictive medicine.  Methods Inf Med. 2010;49(2):173-185.PubMedGoogle ScholarCrossref
2.
Hawgood  S, Hook-Barnard  IG, O’Brien  TC, Yamamoto  KR.  Precision medicine: beyond the inflection point.  Sci Transl Med. 2015;7(300):300ps17.PubMedGoogle ScholarCrossref
3.
Llorach  R, Garcia-Aloy  M, Tulipani  S, Vazquez-Fresno  R, Andres-Lacueva  C.  Nutrimetabolomic strategies to develop new biomarkers of intake and health effects.  J Agric Food Chem. 2012;60(36):8797-8808.PubMedGoogle ScholarCrossref
4.
Gowda  GA, Zhang  S, Gu  H, Asiago  V, Shanaiah  N, Raftery  D.  Metabolomics-based methods for early disease diagnostics.  Expert Rev Mol Diagn. 2008;8(5):617-633.PubMedGoogle ScholarCrossref
5.
Koeth  RA, Wang  Z, Levison  BS,  et al.  Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis.  Nat Med. 2013;19(5):576-585.PubMedGoogle ScholarCrossref
6.
Zhu  J, Djukovic  D, Deng  L,  et al.  Colorectal cancer detection using targeted serum metabolic profiling.  J Proteome Res. 2014;13(9):4120-4130.PubMedGoogle ScholarCrossref
7.
Bos  LD, Weda  H, Wang  Y,  et al.  Exhaled breath metabolomics as a noninvasive diagnostic tool for acute respiratory distress syndrome.  Eur Respir J. 2014;44(1):188-197.PubMedGoogle ScholarCrossref
8.
Wang  Z, Levison  BS, Hazen  JE, Donahue  L, Li  XM, Hazen  SL.  Measurement of trimethylamine-N-oxide by stable isotope dilution liquid chromatography tandem mass spectrometry.  Anal Biochem. 2014;455:35-40.PubMedGoogle ScholarCrossref
9.
Lin  ZY, Xu  PB, Yan  SK,  et al.  A metabonomic approach to early prognostic evaluation of experimental sepsis by (1)H NMR and pattern recognition.  NMR Biomed. 2009;22(6):601-608.PubMedGoogle ScholarCrossref
10.
Dai  DF, Karunadharma  PP, Chiao  YA,  et al.  Altered proteome turnover and remodeling by short-term caloric restriction or rapamycin rejuvenate the aging heart.  Aging Cell. 2014;13(3):529-539.PubMedGoogle ScholarCrossref
11.
Sood  RF, Gu  H, Djukovic  D,  et al.  Targeted metabolic profiling of wounds in diabetic and nondiabetic mice.  Wound Repair Regen. 2015;23(3):423-434.PubMedGoogle ScholarCrossref
12.
Nicholson  JK, Holmes  E, Kinross  JM, Darzi  AW, Takats  Z, Lindon  JC.  Metabolic phenotyping in clinical and surgical environments.  Nature. 2012;491(7424):384-392.PubMedGoogle ScholarCrossref
13.
Cuschieri  J, Johnson  JL, Sperry  J,  et al; Inflammation and Host Response to Injury, Large Scale Collaborative Research Program.  Benchmarking outcomes in the critically injured trauma patient and the effect of implementing standard operating procedures.  Ann Surg. 2012;255(5):993-999.PubMedGoogle ScholarCrossref
14.
Keel  M, Trentz  O.  Pathophysiology of polytrauma.  Injury. 2005;36(6):691-709.PubMedGoogle ScholarCrossref
15.
Hirsiger  S, Simmen  HP, Werner  CM, Wanner  GA, Rittirsch  D.  Danger signals activating the immune response after trauma.  Mediators Inflamm. 2012;2012:315941.PubMedGoogle ScholarCrossref
16.
Plank  LD, Hill  GL.  Sequential metabolic changes following induction of systemic inflammatory response in patients with severe sepsis or major blunt trauma.  World J Surg. 2000;24(6):630-638.PubMedGoogle ScholarCrossref
17.
Peltz  ED, D’Alessandro  A, Moore  EE,  et al.  Pathologic metabolism: an exploratory study of the plasma metabolome of critical injury.  J Trauma Acute Care Surg. 2015;78(4):742-751.PubMedGoogle ScholarCrossref
18.
Cohen  MJ, Serkova  NJ, Wiener-Kronish  J, Pittet  JF, Niemann  CU.  1H-NMR-based metabolic signatures of clinical outcomes in trauma patients: beyond lactate and base deficit.  J Trauma. 2010;69(1):31-40.PubMedGoogle ScholarCrossref
19.
Mao  H, Wang  H, Wang  B,  et al.  Systemic metabolic changes of traumatic critically ill patients revealed by an NMR-based metabonomic approach.  J Proteome Res. 2009;8(12):5423-5430.PubMedGoogle ScholarCrossref
20.
Kuligowski  J, Sánchez-Illana  Á, Sanjuán-Herráez  D, Vento  M, Quintás  G.  Intra-batch effect correction in liquid chromatography-mass spectrometry using quality control samples and support vector regression (QC-SVRC).  Analyst. 2015;140(22):7810-7817.PubMedGoogle ScholarCrossref
21.
Bueschl  C, Krska  R, Kluger  B, Schuhmacher  R.  Isotopic labeling-assisted metabolomics using LC-MS.  Anal Bioanal Chem. 2013;405(1):27-33.PubMedGoogle ScholarCrossref
22.
Gu  H, Du  J, Carnevale Neto  F,  et al.  Metabolomics method to comprehensively analyze amino acids in different domains.  Analyst. 2015;140(8):2726-2734.PubMedGoogle ScholarCrossref
23.
Benjamini  Y, Hochberg  Y.  Controlling the false discovery rate: a practical and powerful approach to multiple testing.  J R Stat Soc B. 1995;57(1):289-300.Google Scholar
24.
R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/. Published 2014. Accessed February 4, 2016.
25.
Broad Institute of MIT; Harvard University. GENE-E. Version 3.0.204. http://www.broadinstitute.org/cancer/software/GENE-E/. Published 2015. Accessed January 17, 2016.
26.
Wishart  D, Xia  J. MetaboAnalyst 3.0: a comprehensive tool suite for metabolomic data analysis. Alberta, Canada: The Metabolomics Innovation Center. http://www.metaboanalyst.ca/. Published 2015. Accessed November 14, 2015.
27.
Rinehart  D, Johnson  CH, Nguyen  T,  et al.  Metabolomic data streaming for biology-dependent data acquisition.  Nat Biotechnol. 2014;32(6):524-527.PubMedGoogle ScholarCrossref
28.
Cuthbertson  D.  Observations on the disturbance of metabolism produced by injury to the limbs.  Q J Med. 1932;1:233-246.Google Scholar
29.
Gelfand  RA, Matthews  DE, Bier  DM, Sherwin  RS.  Role of counterregulatory hormones in the catabolic response to stress.  J Clin Invest. 1984;74(6):2238-2248.PubMedGoogle ScholarCrossref
30.
Cynober  LA.  Plasma amino acid levels with a note on membrane transport: characteristics, regulation, and metabolic significance.  Nutrition. 2002;18(9):761-766.PubMedGoogle ScholarCrossref
31.
Cals  MJ, Bories  PN, Devanlay  M,  et al; Research Group on Aging.  Extensive laboratory assessment of nutritional status in fit, health-conscious, elderly people living in the Paris area.  J Am Coll Nutr. 1994;13(6):646-657.PubMedGoogle ScholarCrossref
32.
Le Boucher  J, Cynober  L.  Protein metabolism and therapy in burn injury.  Ann Nutr Metab. 1997;41(2):69-82.PubMedGoogle ScholarCrossref
33.
Wishart  DS, Jewison  T, Guo  AC,  et al.  HMDB 3.0: The Human Metabolome Database in 2013.  Nucleic Acids Res. 2013;41(database issue):D801-D807.PubMedGoogle ScholarCrossref
34.
Gravel  RA, Narang  MA.  Molecular genetics of biotin metabolism: old vitamin, new science.  J Nutr Biochem. 2005;16(7):428-431.PubMedGoogle ScholarCrossref
35.
Sonee  M, Martens  JR, Mukherjee  SK.  Nicotinamide protects HCN2 cells from the free radical generating toxin, tertiary butylhydroperoxide (t-BuOOH).  Neurotox Res. 2002;4(7-8):595-599.PubMedGoogle ScholarCrossref
36.
Ruggieri  S, Orsomando  G, Sorci  L, Raffaelli  N.  Regulation of NAD biosynthetic enzymes modulates NAD-sensing processes to shape mammalian cell physiology under varying biological cues.  Biochim Biophys Acta. 2015;1854(9):1138-1149.PubMedGoogle ScholarCrossref
37.
Alonso  A, Marsal  S, Julià  A.  Analytical methods in untargeted metabolomics: state of the art in 2015.  Front Bioeng Biotechnol. 2015;3:23.PubMedGoogle ScholarCrossref
38.
Abumrad  NN, Miller  B.  The physiologic and nutritional significance of plasma-free amino acid levels.  JPEN J Parenter Enteral Nutr. 1983;7(2):163-170.PubMedGoogle ScholarCrossref
Original Investigation
Pacific Coast Surgical Association
July 20, 2016

Use of Metabolomics to Trend Recovery and Therapy After Injury in Critically Ill Trauma Patients

Author Affiliations
  • 1Harborview Department of Surgery, University of Washington Medical Center, Seattle
  • 2Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle
JAMA Surg. 2016;151(7):e160853. doi:10.1001/jamasurg.2016.0853
Abstract

Importance  Metabolomics is the broad and parallel study of metabolites within an organism and provides a contemporaneous snapshot of physiologic state. Use of metabolomics in the clinical setting may help achieve precision medicine for those who have experienced trauma, where diagnosis and treatment are tailored to the individual patient.

Objective  To examine whether metabolomics can (1) distinguish healthy volunteers from trauma patients and (2) quantify changes in catabolic metabolites over time after injury.

Design, Setting, and Participants  Prospective cohort study with enrollment from September 2014 to May 2015 at an urban, level 1 trauma center. Included in the study were 10 patients with severe blunt trauma admitted within 12 hours of injury with systolic blood pressure less than 90 mm Hg or base deficit greater than 6 mEq/L and 5 healthy volunteers. Plasma samples (n = 35) were obtained on days 1, 3, and 7, and they were analyzed using mass spectrometry.

Main Outcomes and Measures  Principal component analyses, multiple linear regression, and paired t tests were used to select biomarkers of interest. A broad-based metabolite profile comparison between trauma patients and healthy volunteers was performed. Specific biomarkers of interest were oxidative catabolites.

Results  Trauma patients had a median age of 45 years and a median injury severity score of 43 (interquartile range, 34-50). Healthy fasting volunteers had a median age of 33 years. Compared with healthy volunteers, trauma patients showed oxidative stress on day 1: niacinamide concentrations were a mean (interquartile range) of 0.95 (0.30-1.45) relative units for trauma patients vs 1.06 (0.96-1.09) relative units for healthy volunteers (P = .02), biotin concentrations, 0.43 (0.27-0.58) relative units for trauma patients vs 1.21 (0.93-1.56) relative units for healthy volunteers (P = .049); and choline concentrations, 0.17 (0.09-0.22) relative units for trauma patients vs 0.21 (0.18-0.22) relative units for healthy volunteers (P = .004). Trauma patients showed lower nucleotide synthesis on day 1: adenylosuccinate concentrations were 0.08 (0.04-0.12) relative units for trauma patients vs 0.15 (0.14-0.17) relative units for healthy volunteers (P = .02) and cytidine concentrations were 1.44 (0.95-1.73) relative units for trauma patients vs 1.74 (1.62-1.98) relative units for healthy volunteers (P = .05). From trauma day 1 to day 7, trauma patients showed increasing muscle catabolism: serine levels increased from 42.03 (31.20-54.95) µM to 79.37 (50.29-106.37) µM (P = .002), leucine levels increased from 69.21 (48.36-99.89) µM to 114.16 (92.89-143.52) µM (P = .004), isoleucine levels increased from 20.43 (10.92-27.41) µM to 48.72 (36.28-64.84) µM (P < .001), and valine levels increased from 122.56 (95.63-140.61) µM to 190.52 (136.68-226.07) µM (P = .004). There was an incomplete reversal of oxidative stress.

Conclusions and Relevance  Metabolomics can function as a serial, comprehensive, and potentially personalized tool to characterize metabolism after injury. A targeted metabolomics approach was associated with ongoing oxidative stress, impaired nucleotide synthesis, and initial suppression of protein metabolism followed by increased nitrogen turnover. This technique may provide new therapeutic and nutrition targets in critically injured patients.

×