[Skip to Content]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.207.240.35. Please contact the publisher to request reinstatement.
[Skip to Content Landing]
1.
Haagsma  JA, Graetz  N, Bolliger  I,  et al.  The global burden of injury: incidence, mortality, disability-adjusted life years and time trends from the Global Burden of Disease study 2013.  Inj Prev. 2016;22(1):3-18. doi:10.1136/injuryprev-2015-041616PubMedGoogle ScholarCrossref
2.
Mohammad  A, Branicki  F, Abu-Zidan  FM.  Educational and clinical impact of Advanced Trauma Life Support (ATLS) courses: a systematic review.  World J Surg. 2014;38(2):322-329. doi:10.1007/s00268-013-2294-0PubMedGoogle ScholarCrossref
3.
Luedi  MM, Wölfl  CC, Wieferich  K, Dogjani  A, Kauf  P, Doll  D.  Teaching Advanced Trauma Life Support (ATLS): a nationwide retrospective analysis of 8202 lessons taught in Germany.  J Surg Educ. 2017;74(1):161-166. doi:10.1016/j.jsurg.2016.06.010PubMedGoogle ScholarCrossref
4.
Celso  B, Tepas  J, Langland-Orban  B,  et al.  A systematic review and meta-analysis comparing outcome of severely injured patients treated in trauma centers following the establishment of trauma systems.  J Trauma. 2006;60(2):371-378. doi:10.1097/01.ta.0000197916.99629.ebPubMedGoogle ScholarCrossref
5.
Cannon  JW, Khan  MA, Raja  AS,  et al.  Damage control resuscitation in patients with severe traumatic hemorrhage: a practice management guideline from the Eastern Association for the Surgery of Trauma.  J Trauma Acute Care Surg. 2017;82(3):605-617. doi:10.1097/TA.0000000000001333PubMedGoogle ScholarCrossref
6.
Ker  K, Roberts  I, Shakur  H, Coats  TJ.  Antifibrinolytic drugs for acute traumatic injury.  Cochrane Database Syst Rev. 2015;(5):CD004896.PubMedGoogle Scholar
7.
Tang  J, Shi  Z, Hu  J,  et al.  Optimal sequence of surgical procedures for hemodynamically unstable patients with pelvic fracture: a network meta-analysis.  Am J Emerg Med. 2019;37(4):571-578. doi:10.1016/j.ajem.2018.06.027PubMedGoogle ScholarCrossref
8.
Stengel  D, Rademacher  G, Ekkernkamp  A, Güthoff  C, Mutze  S.  Emergency ultrasound-based algorithms for diagnosing blunt abdominal trauma.  Cochrane Database Syst Rev. 2015;9(9):CD004446. doi:10.1002/14651858.CD004446.pub4PubMedGoogle Scholar
9.
Borger van der Burg  BLS, van Dongen  TTCF, Morrison  JJ,  et al.  A systematic review and meta-analysis of the use of resuscitative endovascular balloon occlusion of the aorta in the management of major exsanguination.  Eur J Trauma Emerg Surg. 2018;44(4):535-550. doi:10.1007/s00068-018-0959-yPubMedGoogle ScholarCrossref
10.
King  DR.  Initial care of the severely injured patient.  N Engl J Med. 2019;380(8):763-770. doi:10.1056/NEJMra1609326PubMedGoogle ScholarCrossref
11.
Huber-Wagner  S, Lefering  R, Kanz  KG, Biberthaler  P, Stengel  D.  The importance of immediate total-body CT scanning.  Lancet. 2017;389(10068):502-503. doi:10.1016/S0140-6736(17)30232-5PubMedGoogle ScholarCrossref
12.
Sierink  JC, Treskes  K, Edwards  MJ,  et al; REACT-2 study group.  Immediate total-body CT scanning versus conventional imaging and selective CT scanning in patients with severe trauma (REACT-2): a randomised controlled trial.  Lancet. 2016;388(10045):673-683. doi:10.1016/S0140-6736(16)30932-1PubMedGoogle ScholarCrossref
13.
Murphy  SP, Hawthorne  N, Haase  D, Chiku  C, Wen  J, Rodriguez  RM.  Low yield of clinically significant injury with head-to-pelvis computed tomography in blunt trauma evaluation.  J Emerg Med. 2017;53(6):865-870. doi:10.1016/j.jemermed.2017.08.036PubMedGoogle ScholarCrossref
14.
Long  B, April  MD, Summers  S, Koyfman  A.  Whole body CT versus selective radiological imaging strategy in trauma: an evidence-based clinical review.  Am J Emerg Med. 2017;35(9):1356-1362. doi:10.1016/j.ajem.2017.03.048PubMedGoogle ScholarCrossref
15.
Stengel  D, Ottersbach  C, Matthes  G,  et al.  Accuracy of single-pass whole-body computed tomography for detection of injuries in patients with major blunt trauma.  CMAJ. 2012;184(8):869-876. doi:10.1503/cmaj.111420PubMedGoogle ScholarCrossref
16.
Brenner  DJ, Hall  EJ.  Computed tomography—an increasing source of radiation exposure.  N Engl J Med. 2007;357(22):2277-2284. doi:10.1056/NEJMra072149PubMedGoogle ScholarCrossref
17.
Geyer  LL, Körner  M, Harrieder  A,  et al.  Dose reduction in 64-row whole-body CT in multiple trauma: an optimized CT protocol with iterative image reconstruction on a gemstone-based scintillator.  Br J Radiol. 2016;89(1061):20160003. doi:10.1259/bjr.20160003PubMedGoogle Scholar
18.
Smith-Bindman  R, Lipson  J, Marcus  R,  et al.  Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer.  Arch Intern Med. 2009;169(22):2078-2086. doi:10.1001/archinternmed.2009.427PubMedGoogle ScholarCrossref
19.
Smith-Bindman  R, Wang  Y, Chu  P,  et al.  International variation in radiation dose for computed tomography examinations: prospective cohort study.  BMJ. 2019;364:k4931. doi:10.1136/bmj.k4931PubMedGoogle ScholarCrossref
20.
Kahn  J, Kaul  D, Böning  G,  et al.  Quality and dose optimized CT trauma protocol: recommendation from a university level-I trauma center.  Rofo. 2017;189(9):844-854. doi:10.1055/s-0043-108996PubMedGoogle ScholarCrossref
21.
Bouillon  B, Pieper  D, Flohé  S,  et al; Polytrauma Guideline Update Group.  Level 3 guideline on the treatment of patients with severe/multiple injuries: AWMF Register-Nr. 012/019.  Eur J Trauma Emerg Surg. 2018;44(1)(suppl 1):3-271.PubMedGoogle ScholarCrossref
22.
Treskes  K, Saltzherr  TP, Luitse  JS, Beenen  LF, Goslings  JC.  Indications for total-body computed tomography in blunt trauma patients: a systematic review.  Eur J Trauma Emerg Surg. 2017;43(1):35-42. doi:10.1007/s00068-016-0711-4PubMedGoogle ScholarCrossref
23.
Hare  NP, Macdonald  AW, Mellor  JP, Younus  M, Chatha  H, Sammy  I.  Do clinical guidelines for whole body computerised tomography in trauma improve diagnostic accuracy and reduce unnecessary investigations? a systematic review and narrative synthesis.  Trauma. 2017;19(3):163-174. doi:10.1177/1460408617700450Google ScholarCrossref
24.
Hsiao  KH, Dinh  MM, McNamara  KP,  et al.  Whole-body computed tomography in the initial assessment of trauma patients: is there optimal criteria for patient selection?  Emerg Med Australas. 2013;25(2):182-191. doi:10.1111/1742-6723.12041PubMedGoogle ScholarCrossref
25.
Arora  R, Arora  AJ.  Justification of whole-body CT in polytrauma patients, can clinical examination help selecting patients?  Quant Imaging Med Surg. 2019;9(4):636-641. doi:10.21037/qims.2019.04.02PubMedGoogle ScholarCrossref
26.
Davies  RM, Scrimshire  AB, Sweetman  L, Anderton  MJ, Holt  EM.  A decision tool for whole-body CT in major trauma that safely reduces unnecessary scanning and associated radiation risks: an initial exploratory analysis.  Injury. 2016;47(1):43-49. doi:10.1016/j.injury.2015.08.036PubMedGoogle ScholarCrossref
27.
Noël  PB, Fingerle  AA, Renger  B, Münzel  D, Rummeny  EJ, Dobritz  M.  Initial performance characterization of a clinical noise-suppressing reconstruction algorithm for MDCT.  AJR Am J Roentgenol. 2011;197(6):1404-1409. doi:10.2214/AJR.11.6907PubMedGoogle ScholarCrossref
28.
Noël  PB, Fingerle  AA, Renger  B, Rummeny  EJ, Doherty  C. A clinical comparison study of a novel statistical iterative and filtered backprojection reconstruction. Paper presented at: SPIE Medical Imaging 2011: Physics of Medical Imaging; Lake Buena Vista, FL: March 16, 2011.
29.
Pape  HC, Lefering  R, Butcher  N,  et al.  The definition of polytrauma revisited: an international consensus process and proposal of the new “Berlin definition”.  J Trauma Acute Care Surg. 2014;77(5):780-786. doi:10.1097/TA.0000000000000453PubMedGoogle ScholarCrossref
30.
Butcher  N, Balogh  ZJ.  AIS>2 in at least two body regions: a potential new anatomical definition of polytrauma.  Injury. 2012;43(2):196-199. doi:10.1016/j.injury.2011.06.029PubMedGoogle ScholarCrossref
31.
Smith-Bindman  R, Miglioretti  DL.  CTDIvol, DLP, and effective dose are excellent measures for use in CT quality improvement.  Radiology. 2011;261(3):999. doi:10.1148/radiol.11111055PubMedGoogle ScholarCrossref
32.
Stengel  D, Ottersbach  C, Kahl  T,  et al.  Dose reduction in whole-body computed tomography of multiple injuries (DoReMI): protocol for a prospective cohort study.  Scand J Trauma Resusc Emerg Med. 2014;22:15. doi:10.1186/1757-7241-22-15PubMedGoogle ScholarCrossref
33.
Eurin  M, Haddad  N, Zappa  M,  et al.  Incidence and predictors of missed injuries in trauma patients in the initial hot report of whole-body CT scan.  Injury. 2012;43(1):73-77. doi:10.1016/j.injury.2011.05.019PubMedGoogle ScholarCrossref
34.
Geyer  LL, Körner  M, Linsenmaier  U,  et al.  Incidence of delayed and missed diagnoses in whole-body multidetector CT in patients with multiple injuries after trauma.  Acta Radiol. 2013;54(5):592-598. doi:10.1177/0284185113475443PubMedGoogle ScholarCrossref
35.
Goodman  SN, Berlin  JA.  The use of predicted confidence intervals when planning experiments and the misuse of power when interpreting results.  Ann Intern Med. 1994;121(3):200-206. doi:10.7326/0003-4819-121-3-199408010-00008PubMedGoogle ScholarCrossref
36.
Wagner  AK, Soumerai  SB, Zhang  F, Ross-Degnan  D.  Segmented regression analysis of interrupted time series studies in medication use research.  J Clin Pharm Ther. 2002;27(4):299-309. doi:10.1046/j.1365-2710.2002.00430.xPubMedGoogle ScholarCrossref
37.
Huber-Wagner  S, Biberthaler  P, Häberle  S,  et al; TraumaRegister DGU.  Whole-body CT in haemodynamically unstable severely injured patients—a retrospective, multicentre study.  PLoS One. 2013;8(7):e68880. doi:10.1371/journal.pone.0068880PubMedGoogle Scholar
38.
Huber-Wagner  S, Lefering  R, Qvick  LM,  et al; Working Group on Polytrauma of the German Trauma Society.  Effect of whole-body CT during trauma resuscitation on survival: a retrospective, multicentre study.  Lancet. 2009;373(9673):1455-1461. doi:10.1016/S0140-6736(09)60232-4PubMedGoogle ScholarCrossref
39.
Tsutsumi  Y, Fukuma  S, Tsuchiya  A,  et al.  Computed tomography during initial management and mortality among hemodynamically unstable blunt trauma patients: a nationwide retrospective cohort study.  Scand J Trauma Resusc Emerg Med. 2017;25(1):74. doi:10.1186/s13049-017-0396-7PubMedGoogle ScholarCrossref
40.
Linder  F, Mani  K, Juhlin  C, Eklöf  H.  Routine whole body CT of high energy trauma patients leads to excessive radiation exposure.  Scand J Trauma Resusc Emerg Med. 2016;24:7. doi:10.1186/s13049-016-0199-2PubMedGoogle ScholarCrossref
41.
Gordic  S, Alkadhi  H, Hodel  S,  et al.  Whole-body CT-based imaging algorithm for multiple trauma patients: radiation dose and time to diagnosis.  Br J Radiol. 2015;88(1047):20140616. doi:10.1259/bjr.20140616PubMedGoogle Scholar
42.
Van Arnem  KA, Supinski  DP  Jr, Tucker  JE, Varney  S.  Cumulative effective radiation dose received by blunt trauma patients arriving to a military level I trauma center from point of injury and interhospital transfers.  Am J Emerg Med. 2016;34(12):2397-2401. doi:10.1016/j.ajem.2016.09.018PubMedGoogle ScholarCrossref
43.
Banaste  N, Caurier  B, Bratan  F, Bergerot  JF, Thomson  V, Millet  I.  Whole-body CT in patients with multiple traumas: factors leading to missed injury.  Radiology. 2018;289(2):374-383. doi:10.1148/radiol.2018180492PubMedGoogle ScholarCrossref
44.
Giannakopoulos  GF, Saltzherr  TP, Beenen  LF,  et al; REACT Study Group.  Missed injuries during the initial assessment in a cohort of 1124 level-1 trauma patients.  Injury. 2012;43(9):1517-1521. doi:10.1016/j.injury.2011.07.012PubMedGoogle ScholarCrossref
45.
Christner  JA, Kofler  JM, McCollough  CH.  Estimating effective dose for CT using dose-length product compared with using organ doses: consequences of adopting International Commission on Radiological Protection publication 103 or dual-energy scanning.  AJR Am J Roentgenol. 2010;194(4):881-889. doi:10.2214/AJR.09.3462PubMedGoogle ScholarCrossref
46.
Mayo-Smith  WW, Hara  AK, Mahesh  M, Sahani  DV, Pavlicek  W.  How I do it: managing radiation dose in CT.  Radiology. 2014;273(3):657-672. doi:10.1148/radiol.14132328PubMedGoogle ScholarCrossref
Limit 200 characters
Limit 25 characters
Conflicts of Interest Disclosure

Identify all potential conflicts of interest that might be relevant to your comment.

Conflicts of interest comprise financial interests, activities, and relationships within the past 3 years including but not limited to employment, affiliation, grants or funding, consultancies, honoraria or payment, speaker's bureaus, stock ownership or options, expert testimony, royalties, donation of medical equipment, or patents planned, pending, or issued.

Err on the side of full disclosure.

If you have no conflicts of interest, check "No potential conflicts of interest" in the box below. The information will be posted with your response.

Not all submitted comments are published. Please see our commenting policy for details.

Limit 140 characters
Limit 3600 characters or approximately 600 words
    Views 2,050
    Citations 0
    Original Investigation
    January 15, 2020

    Association of Low-Dose Whole-Body Computed Tomography With Missed Injury Diagnoses and Radiation Exposure in Patients With Blunt Multiple Trauma

    Author Affiliations
    • 1Center for Clinical Research, BG Klinikum Unfallkrankenhaus Berlin gGmbH, Berlin, Germany
    • 2Department of Trauma and Orthopaedic Surgery, BG Klinikum Unfallkrankenhaus Berlin gGmbH, Berlin, Germany
    • 3BG Kliniken–Klinikverbund der Gesetzlichen Unfallversicherung gGmbH, Berlin, Germany
    • 4Institute of Radiology, BG Klinikum Unfallkrankenhaus Berlin gGmbH, Berlin, Germany
    • 5Consultant in radiation physics, Hamburg, Germany
    JAMA Surg. Published online January 15, 2020. doi:10.1001/jamasurg.2019.5468
    Key Points

    Question  Is low-dose whole-body computed tomography with statistical image reconstruction associated with similar rates of missed injuries and accuracy but reduced radiation exposure compared with standard-dose whole-body computed tomography in the primary diagnostic workup of blunt multiple trauma?

    Findings  In this quasi-experimental cohort study of 971 patients with suspected blunt multiple trauma, participants in the standard-dose and low-dose whole-body computed tomography groups had the same risk of missed injury diagnoses. Low-dose scanning markedly reduced exposure to radiation, improved the contrast-to-noise ratio, and showed similar diagnostic accuracy among the investigated anatomical areas and organs when compared with standard-dose scanning.

    Meaning  These findings suggest that low-dose whole-body computed tomography may safely replace standard-dose scanning in the primary diagnostic workup of blunt multiple trauma.

    Abstract

    Importance  Initial whole-body computed tomography (WBCT) for screening patients with suspected blunt multiple trauma remains controversial and a source of excess radiation exposure.

    Objective  To determine whether low-dose WBCT scanning using an iterative reconstruction algorithm does not increase the rate of missed injury diagnoses at the point of care compared with standard-dose WBCT with the benefit of less radiation exposure.

    Design, Setting, and Participants  This quasi-experimental, prospective time-series cohort study recruited 1074 consecutive patients admitted for suspected blunt multiple trauma to an academic metropolitan trauma center in Germany from September 3, 2014, through July 26, 2015, for the standard-dose protocol, and from August 7, 2015, through August 20, 2016, for the low-dose protocol. Five hundred sixty-five patients with suspected blunt multiple trauma prospectively received standard-dose WBCT, followed by 509 patients who underwent low-dose WBCT. Confounding was controlled by segmented regression analysis and a secondary multivariate logistic regression model. Data were analyzed from January 16, 2017, through October 14, 2019.

    Interventions  Standard- or low-dose WBCT.

    Main Outcomes and Measures  The primary outcome was the incidence of missed injury diagnoses at the point of care, using a synopsis of clinical, surgical, and radiological findings as an independent reference test. The secondary outcome was radiation exposure with either imaging strategy.

    Results  Of 1074 eligible patients, 971 (mean [SD] age, 52.7 [19.5] years; 649 men [66.8%]) completed the study. A total of 114 patients (11.7%) had multiple trauma, as defined by an Injury Severity Score of 16 or greater. The proportion of patients with any missed injury diagnosis at the point of care was 109 of 468 (23.3%) in the standard-dose and 107 of 503 (21.3%) in the low-dose WBCT groups (risk difference, −2.0% [95% CI, −7.3% to 3.2%]; unadjusted odds ratio, 0.89 [95% CI, 0.66-1.20]; P = .45). Adjustments for autocorrelation and multiple confounding variables did not alter the results. Radiation exposure, measured by the volume computed tomography dose index, was lowered from a median of 11.7 (interquartile range, 11.7-17.6) mGy in the standard-dose WBCT group to 5.9 (interquartile range, 5.9-8.8) mGy in the low-dose WBCT group (P < .001).

    Conclusions and Relevance  Low-dose WBCT using iterative image reconstruction does not appear to increase the risk of missed injury diagnoses at the point of care compared with standard-dose protocols while almost halving the exposure to diagnostic radiation.

    ×