Experimental Short-term Immunosuppression After Bowel Transplantation and Donor-Specific Bone Marrow Infusion | Allergy and Clinical Immunology | JAMA Surgery | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.173.234.169. Please contact the publisher to request reinstatement.
1.
Thomas  JCarver  MCunningham  PPark  KGonder  JThomas  F Promotion of incompatible allograft acceptance in rhesus monkeys given posttransplant antithymocyte globulin and donor bone marrow.  Transplantation. 1987;43332- 338Google ScholarCrossref
2.
Colson  YLZadach  KNalesnik  MIldstad  ST Mixed allogeneic chimerism in the rat.  Transplantation. 1995;60971- 980Google ScholarCrossref
3.
Murase  NStarzl  TETanabe  M  et al.  Variable chimerism, graft-versus-host disease, and tolerance after different kinds of cell and whole organ transplantation from Lewis to brown Norway rats.  Transplantation. 1995;60158- 171Google ScholarCrossref
4.
Li  HColson  YLIldstad  ST Mixed allogeneic chimerism achieved by lethal and nonlethal conditioning approaches induces donor-specific tolerance to simultaneous islet allografts.  Transplantation. 1995;60523- 529Google ScholarCrossref
5.
Ricordi  CMurase  NRastellini  CBehboo  RDemetris  AJStarzl  TE Indefinite survival of rat islet allografts following infusion of donor bone marrow without cytoablation.  Cell Transplant. 1996;553- 55Google ScholarCrossref
6.
Barber  WHMankin  JALaskow  DA  et al.  Long-term results of a controlled prospective study with transfusion of donor-specific bone marrow in 57 cadaveric renal allograft recipients.  Transplantation. 1991;5170- 75Google ScholarCrossref
7.
Brennan  DCMohanakumar  TFlye  MW Donor-specific transfusion and donor bone marrow infusion in renal transplantation tolerance: a review of efficacy and mechanisms.  Am J Kidney Dis. 1995;26701- 715Google ScholarCrossref
8.
Rolles  KBurroughs  AKDavidson  BRKaratapanis  SPrentice  HGHamon  MD Donor-specific bone marrow infusion after orthotopic liver transplantation.  Lancet. 1994;343263- 265Google ScholarCrossref
9.
Burke  GWRicordi  CKaratzas  T Donor bone marrow infusion in simultaneous pancreas/kidney transplant recipients.  Transplant Proc. 1995;273121- 3122Google Scholar
10.
Zeevi  APavlick  MBanas  R  et al.  Three years of follow-up of bone marrow-augmented organ transplant recipients: the impact on donor-specific immune modulation.  Transplant Proc. 1997;291205- 1206Google ScholarCrossref
11.
Shapiro  RRao  ASFontes  P  et al.  Combined simultaneous kidney/bone marrow transplantation.  Transplantation. 1995;601421- 1425Google ScholarCrossref
12.
Pirenne  JGruessner  ACBenedetti  E  et al.  Donor-specific unmodified bone marrow transfusion does not facilitate intestinal engraftment after bowel transplantation in a porcine model.  Surgery. 1997;12179- 88Google ScholarCrossref
13.
Gruessner  RWUckun  FMPirenne  J  et al.  Recipient preconditioning and donor-specific bone marrow infusion in a pig model of total bowel transplantation.  Transplantation. 1997;6312- 20Google ScholarCrossref
14.
Pirenne  JBenedetti  EGruessner  AC  et al.  Combined transplantation of small and large bowel: FK 506 versus cyclosporin A in a porcine model.  Transplantation. 1996;611685- 1694Google ScholarCrossref
15.
Nakhleh  REGruessner  ACPirenne  JBenedetti  ETroppmann  CGruessner  RW Colon vs small bowel rejection after total bowel transplantation in a pig model.  Transpl Int. 1996;9 (suppl 1) S269- S274Google ScholarCrossref
16.
Grant  Dfor the Intestinal Transplant Registry, Intestinal transplantation: 1997 Report of the International Registry.  Transplantation. 1999;671061- 1064Google ScholarCrossref
17.
Kaufman  CLColson  YLWren  SMWatkins  SSimmons  RLIldstad  ST Phenotypic characterization of a novel bone marrow-derived cell that facilitates engraftment of allogeneic bone marrow stem cell.  Blood. 1994;842436- 2446Google Scholar
18.
Pirenne  JMoon  CGruessner  A  et al.  Bone marrow augmentation of kidney allografts can cause graft-versus-host disease in immunosuppressed recipients.  Transplant Proc. 1996;28941- 942Google Scholar
19.
Schlitt  HJHundrieser  JRinge  BPichlmayr  R Donor-type microchimerism associated with graft rejection eight years after liver transplantation.  N Engl J Med. 1994;330646- 647Google ScholarCrossref
20.
Sivasai  KSAlevy  YGDuffy  BF  et al.  Peripheral blood microchimerism in human liver and renal transplant recipients: rejection despite donor-specific chimerism.  Transplantation. 1997;64427- 432Google ScholarCrossref
Original Article
July 2001

Experimental Short-term Immunosuppression After Bowel Transplantation and Donor-Specific Bone Marrow Infusion

Author Affiliations

From the Department of Surgery, University of Minnesota, Minneapolis (Drs Harmon, A. Gruessner, and R. Gruessner and Ms Zhang), and the Department of Pathology, Henry Ford Hospital, Detroit, Mich (Dr Nakhleh).

Arch Surg. 2001;136(7):817-821. doi:10.1001/archsurg.136.7.817
Abstract

Hypothesis  We previously showed in a large animal pig model that unmodified donor-specific bone marrow infusion (DSBMI) did not facilitate total bowel engraftment; in contrast, it increased the risks of rejection, infection, and graft-vs-host disease (GVHD) posttransplant. We hypothesize that continuous immunosuppression, in combination with DSBMI, might contribute to—or even trigger—these unwarranted immune responses by both host and graft; therefore, discontinuing immunosuppression might decrease these risks and prolong survival.

Methods  Six groups of outbred, mixed lymphocyte culture–reactive pigs underwent a total (small and large) bowel transplant: group 1, nonimmunosuppressed control pigs (n = 5); group 2, nonimmunosuppressed DSBMI pigs (n = 6); group 3, tacrolimus (indefinite) pigs (n = 7); group 4, tacrolimus (indefinite) plus DSBMI pigs (n = 7); group 5, tacrolimus (10 days only) pigs (n = 5); and group 6, tacrolimus (10 days only) plus DSBMI pigs (n = 6).

Results  The combination of short-term immunosuppression and DSBMI (group 6) significantly prolonged survival, compared with short-term immunosuppression only (group 5) or DSBMI only (group 2). Short-term immunosuppression and DSBMI (group 6) did not prolong overall survival, compared with indefinite immunosuppression with (group 4) or without (group 3) DSBMI: survival rates at 7, 14, and 28 days posttransplant were 100%, 100%, and 67% in group 6; 100%, 100%, and 71% in group 3; and 100%, 67%, and 47% in group 4 (P = .14). Short-term immunosuppression and DSBMI (group 6) increased the incidence of rejection, infection, and GVHD, compared with indefinite immunosuppression without (but not with) DSBMI.

Conclusions  Short-term immunosuppression and DSBMI did not prolong survival and did not reduce the incidence of death from rejection, infection, or GVHD, compared with indefinite immunosuppression without DSBMI. But short-term immunosuppression and DSBMI resulted in a lower incidence of death from infection and GVHD, compared with indefinite immunosuppression and DSBMI. When immunosuppression was discontinued 10 days posttransplant, the effect of DSBMI was insufficient to avert death from rejection.

Clinical Relevance  The clinical results of bowel transplantation trail those of other solid organ transplants. It reduced the rates of infection and GVHD. Our study shows that systemically infused donor-specific bone marrow with short-term or indefinite immunosuppression does not improve outcome after bowel transplantation. It seems necessary to modify the time, dosing, routing, and/or composition of donor-specific bone marrow before it can be successfully used in clinical bowel transplantation.

×