Increased Acid Exposure in Patients With Gastroesophageal Reflux Disease Influences Cyclooxygenase-2 Gene Expression in the Squamous Epithelium of the Lower Esophagus | Esophageal Disease | JAMA Surgery | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 35.173.234.169. Please contact the publisher to request reinstatement.
1.
Lagergren  JBergstrom  RLingren  ANyren  O Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma.  N Engl J Med. 1999;340825- 831PubMedGoogle ScholarCrossref
2.
Iascone  CDeMeester  TRLittle  AGSkinner  DB Barrett's esophagus: functional assessment, proposed pathogenesis and surgical therapy.  Arch Surg. 1983;118543- 549PubMedGoogle ScholarCrossref
3.
Kauer  WKPeters  JHDeMeester  TRIreland  APBremner  CGHagen  JA Mixed reflux of gastric and duodenal juices is more harmful to the esophagus than gastric juice alone: the need for surgical therapy re-emphasized.  Ann Surg. 1995;222525- 531PubMedGoogle ScholarCrossref
4.
Iljima  KHenry  EMoriya  AWirz  AKelman  AWMcColl  KE Dietary nitrate generates potentially mutagenic concentrations of nitric oxide at the gastroesophageal junction.  Gastroenterology. 2002;1221248- 1257PubMedGoogle ScholarCrossref
5.
Gammon  MDSchoenberg  JBAhsan  H  et al.  Tobacco, alcohol, and socioeconomic status and adenocarcinomas of the esophagus and cardia.  J Natl Cancer Inst. 1997;891277- 1284PubMedGoogle ScholarCrossref
6.
Jenkins  GJDoak  SHParry  JMD'Souza  FRGriffiths  APBaxter  JN Genetic pathways involved in the progression of Barrett's metaplasia to adenocarcinoma.  Br J Surg. 2002;89824- 837PubMedGoogle ScholarCrossref
7.
Wijnhoven  BPTilanus  HWDinjens  WN Molecular biology of Barrett's adenocarcinoma.  Ann Surg. 2001;233322- 337PubMedGoogle ScholarCrossref
8.
Gatenby  RAVincent  TL An evolutionary model of carcinogenesis.  Cancer Res. 2003;636212- 6220PubMedGoogle Scholar
9.
Chomczynski  PSacchi  N Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.  Anal Biochem. 1987;162156- 159PubMedGoogle ScholarCrossref
10.
Heid  CAStevens  JLivak  KJWilliams  PM Real time quantitative PCR.  Genome Res. 1996;6986- 994PubMedGoogle ScholarCrossref
11.
Gibson  UEHeid  CAWilliams  PM A novel method for real-time quantitative RT-PCR.  Genome Res. 1996;6995- 1001PubMedGoogle ScholarCrossref
12.
Heath  EICanto  MIWu  TT  et al.  Chemoprevention for Barrett's esophagus trial: design and outcome measures.  Dis Esophagus. 2003;16177- 186PubMedGoogle ScholarCrossref
13.
Zhang  FAltorki  NKWu  YSoslow  RASukbbaramaiah  KDannenberg  AJ Duodenal reflux induces cyclooxygenase-2 in the esophageal mucosa of rats: evidence for involvement of bile acids.  Gastroenterology. 2001;1211391- 1399PubMedGoogle ScholarCrossref
14.
Shirvani  VNOuatu-Lascar  RKaur  BSOmary  MBTriadafilopolous  G Cyclooxygenase-2 expression in Barrett's esophagus and adenocarcinoma; ex-vivo induction by bile salts and acid exposure.  Gastroenterology. 2000;118487- 496PubMedGoogle ScholarCrossref
15.
Vane  JRBakhle  YSBotting  RM Cyclooxygenases 1 and 2 [review].  Annu Rev Pharmacol Toxicol. 1998;3897- 120PubMedGoogle ScholarCrossref
16.
Williams  CSDuBois  RN Prostaglandin endoperoxide synthase: why two isoforms?  Am J Physiol. 1996;270G393- G400PubMedGoogle Scholar
17.
DuBois  RNAbramson  SBCrofford  L  et al.  Cyclooxygenase in biology and disease [review].  FASEB J. 1998;121063- 1073PubMedGoogle Scholar
18.
Herschman  HR Prostaglandin synthase 2 [review].  Biochim Biophys Acta. 1996;1299125- 140PubMedGoogle ScholarCrossref
19.
Tsujii  MDuBois  RN Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2.  Cell. 1995;83493- 501PubMedGoogle ScholarCrossref
20.
Tsujii  MKawan  SDuBois  RN Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential.  Proc Natl Acad Sci U S A. 1997;943336- 3340PubMedGoogle ScholarCrossref
21.
Tsujii  MKawano  STsuji  SSawaoka  HHori  MDuBois  RN Cyclooxygenase regulates angiogenesis induced by colon cancer cells.  Cell. 1998;93705- 716PubMedGoogle ScholarCrossref
22.
Wilson  KTFu  SRamanujam  KSMeltzer  SJ Increased expression of inducible nitric oxide synthase and cyclooxygenase-2 in Barrett's esophagus and associated adenocarcinomas.  Cancer Res. 1998;582929- 2934PubMedGoogle Scholar
23.
Zimmerman  KCSarbia  MWeber  AABorchard  FGabbert  HESchror  K Cyclooxygenase-2 expression in human esophageal carcinoma.  Cancer Res. 1999;59198- 204PubMedGoogle Scholar
24.
Menges  MMichaeli  BPueschel  WZeitz  MMeese  E The influence of the suppression of gastroesophageal reflux on the gene expression pattern in Barrett's esophagus.  Int J Oncol. 2002;201323- 1329PubMedGoogle Scholar
Paper
July 1, 2004

Increased Acid Exposure in Patients With Gastroesophageal Reflux Disease Influences Cyclooxygenase-2 Gene Expression in the Squamous Epithelium of the Lower Esophagus

Author Affiliations

From the Departament de Ci[[egrave]]ncies Experimentals i de la Salut, Universitat Pompeu Fabra (Drs Pereira and Mer[[iacute]]), the Departament d'Anatomia i Embriologia Humana, Facultat de Medicina, Universitat de Barcelona (Drs Potau and Prats-Galino), and the Departament de Cirurgia, Hospital del Mar (Drs Sancho and Sitges-Serra); Barcelona, Spain.

Arch Surg. 2004;139(7):712-716. doi:10.1001/archsurg.139.7.712
Abstract

Hypothesis  Although genetic changes associated with the progression to Barrett esophagus and adenocarcinoma have been identified, changes in gene expression associated with gastroesophageal reflux disease have not been reported. We examined expression levels of several genes important in carcinogenesis and compared expression levels with alterations in esophageal acid exposure.

Patients, Design, and Setting  Prospective analysis of 61 patients initially seen with reflux symptoms at a private academic hospital.

Interventions  Paired esophageal biopsy specimens of squamous epithelium 3 cm above the squamocolumnar junction. All patients had 24-hour pH monitoring performed.

Main Outcome Measures  Cyclooxygenase (COX) 1, COX-2, thymidylate synthase, human telomerase reverse transcriptase (hTERT), Bcl-2 protein, survivin protein, secreted protein acidic and rich in cysteine (SPARC), tetraspan (TSPAN), and caudal-type homeobox transcription factor 2 (CDX2) messenger RNA expression analysis was performed on snap-frozen, microdissected tissue using a quantitative reverse transcriptase–polymerase chain reaction method. Linear regression and the Pearson product moment correlation were used to relate gene expression to parameters of the 24-hour pH record.

Results  Expression levels of COX-2 correlated positively with the 24-hour pH score (r = 0.25, P = .05). There was no correlation between the expression of other tested genes and esophageal acid exposure. There was also no significant increase in COX-2 expression in patients with esophagitis or in those who used nonsteroidal anti-inflammatory drugs.

Conclusions  To our knowledge, these data provide among the first reported correlation of genetic changes and increased esophageal acid exposure in patients with gastroesophageal reflux symptoms. The changes in gene expression occur before any metaplastic changes in the tissue are apparent, and may in the future be useful in predicting which patients will progress through a metaplasia-dysplasia carcinoma sequence.

×