Perioperative Supplemental Oxygen Therapy and Surgical Site Infection: A Meta-analysis of Randomized Controlled Trials | Critical Care Medicine | JAMA Surgery | JAMA Network
[Skip to Navigation]
Access to paid content on this site is currently suspended due to excessive activity being detected from your IP address 18.204.227.34. Please contact the publisher to request reinstatement.
1.
Kirkland  KBBriggs  JPTrivette  SLWilkinson  WESexton  DJ The impact of surgical-site infections in the 1990s: attributable mortality, excess length of hospitalization, and extra costs.  Infect Control Hosp Epidemiol 1999;20 (11) 725- 730PubMedGoogle ScholarCrossref
2.
Kurz  ASessler  DILenhardt  RStudy of Wound Infection and Temperature Group, Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization.  N Engl J Med 1996;334 (19) 1209- 1215PubMedGoogle ScholarCrossref
3.
National Nosocomial Infections Surveillance (NNIS) System, National Nosocomial Infections Surveillance (NNIS) report, data summary from October 1986-April 1996, issued May 1996: a report from the National Nosocomial Infections Surveillance (NNIS) System.  Am J Infect Control 1996;24 (5) 380- 388PubMedGoogle ScholarCrossref
4.
National Audit Office, The Management and Control of Hospital-Acquired Infection in Acute NHS Trusts in England.  London, England Her Majesty's Stationery Office2007;
5.
Bratzler  DWHouck  PMRichards  C  et al.  Use of antimicrobial prophylaxis for major surgery: baseline results from the National Surgical Infection Prevention Project.  Arch Surg 2005;140 (2) 174- 182PubMedGoogle ScholarCrossref
6.
Smith  RLBohl  JK McElearney  ST  et al.  Wound infection after elective colorectal resection.  Ann Surg 2004;239 (5) 599- 605PubMedGoogle ScholarCrossref
7.
Flum  DR Advancing the Clinical Science of Surgery Using Outcomes Research Tools.  University of Washington Medical Center/General Surgery Web site. http://depts.washington.edu/surgery/research/2007/flum.pdf. Accessed January 1, 2007Google Scholar
8.
Allen  DBMaguire  JJMahdavian  M  et al.  Wound hypoxia and acidosis limit neutrophil bacterial killing mechanisms.  Arch Surg 1997;132 (9) 991- 996PubMedGoogle ScholarCrossref
9.
Hopf  HWHunt  TKWest  JM  et al.  Wound tissue oxygen tension predicts the risk of wound infection in surgical patients.  Arch Surg 1997;132 (9) 997- 1004PubMedGoogle ScholarCrossref
10.
Mayzler  OWeksler  NDomchik  SKlein  MMizrahi  SGurman  GM Does supplemental perioperative oxygen administration reduce the incidence of wound infection in elective colorectal surgery?  Minerva Anestesiol 2005;71 (1-2) 21- 25PubMedGoogle Scholar
11.
Pryor  KOFahey  TJ  IIILien  CAGoldstein  PA Surgical site infection and the routine use of perioperative hyperoxia in a general surgical population: a randomized controlled trial.  JAMA 2004;291 (1) 79- 87PubMedGoogle ScholarCrossref
12.
Belda  FJAguilera  LGarcíia de la Asunción  J  et al. Spanish Reduccion de la Tasa de Infeccion Quirurgica Group, Supplemental perioperative oxygen and the risk of surgical wound infection: a randomized controlled trial.  JAMA 2005;294 (16) 2035- 2042PubMedGoogle ScholarCrossref
13.
Greif  RAkça  OHorn  EPKurz  ASessler  DIOutcomes Research Group, Supplemental perioperative oxygen to reduce the incidence of surgical-wound infection.  N Engl J Med 2000;342 (3) 161- 167PubMedGoogle ScholarCrossref
14.
Myles  PSLeslie  KChan  MT  et al. ENIGMA Trial Group, Avoidance of nitrous oxide for patients undergoing major surgery: a randomized controlled trial.  Anesthesiology 2007;107 (2) 221- 231PubMedGoogle ScholarCrossref
15.
Dickersin  KScherer  RLefebvre  C Identifying relevant studies for systematic reviews.  BMJ 1994;309 (6964) 1286- 1291PubMedGoogle ScholarCrossref
16.
Culver  DHHoran  TCGaynes  RP  et al. National Nosocomial Infections Surveillance System, Surgical wound infection rates by wound class, operative procedure, and patient risk index.  Am J Med 1991;91 (3B) 152S- 157SPubMedGoogle ScholarCrossref
17.
Haley  RWCulver  DHMorgan  WMWhite  JWEmori  TGHooton  TM Identifying patients at high risk of surgical wound infection: a simple multivariate index of patient susceptibility and wound contamination.  Am J Epidemiol 1985;121 (2) 206- 215PubMedGoogle Scholar
18.
Wilson  APTreasure  TSturridge  MFGruneberg  RN A scoring method (ASEPSIS) for postoperative wound infections for use in clinical trials of antibiotic prophylaxis.  Lancet 1986;1 (8476) 311- 313PubMedGoogle ScholarCrossref
19.
Jadad  ARMoore  RACarroll  D  et al.  Assessing the quality of reports of randomized clinical trials: is blinding necessary?  Control Clin Trials 1996;17 (1) 1- 12PubMedGoogle ScholarCrossref
20.
Mahid  SSHornung  CAMinor  KSTurina  MGalandiuk  S Systematic reviews and meta-analysis for the surgeon scientist.  Br J Surg 2006;93 (11) 1315- 1324PubMedGoogle ScholarCrossref
21.
Egger  MSmith  GDPhillips  AN Meta-analysis: principles and procedures.  BMJ 1997;315 (7121) 1533- 1537PubMedGoogle ScholarCrossref
22.
Egger  MSmith  GD Meta-analysis: potentials and promise.  BMJ 1997;315 (7119) 1371- 1374PubMedGoogle ScholarCrossref
23.
Egger  MDavey  SGSchneider  MMinder  C Bias in meta-analysis detected by a simple, graphical test.  BMJ 1997;315 (7109) 629- 634PubMedGoogle ScholarCrossref
24.
Begg  CBMazumdar  M Operating characteristics of a rank correlation test for publication bias.  Biometrics 1994;50 (4) 1088- 1101PubMedGoogle ScholarCrossref
25.
Akça  OSessler  DI Supplemental oxygen and risk of surgical site infection.  JAMA 2004;291 (16) 1956- 1957PubMedGoogle Scholar
26.
Bratzler  DWHunt  DR The surgical infection prevention and surgical care improvement projects: national initiatives to improve outcomes for patients having surgery.  Clin Infect Dis 2006;43 (3) 322- 330PubMedGoogle ScholarCrossref
27.
Sessler  DI Non-pharmacologic prevention of surgical wound infection.  Anesthesiol Clin 2006;24 (2) 279- 297PubMedGoogle ScholarCrossref
28.
Turina  MMahid  SSPolk  HC  Jr Improving physician awareness for blood glucose control in contemporary surgical practice.  Surgeon 2006;4 (3) 131- 132PubMedGoogle ScholarCrossref
29.
Classen  DCEvans  RSPestotnik  SLHorn  SDMenlove  RLBurke  JP The timing of prophylactic administration of antibiotics and the risk of surgical-wound infection.  N Engl J Med 1992;326 (5) 281- 286PubMedGoogle ScholarCrossref
30.
Polk  HC  JrLopez-Mayor  JF Postoperative wound infection: a prospective study of determinant factors and prevention.  Surgery 1969;66 (1) 97- 103PubMedGoogle Scholar
31.
Akça  OMelischek  MScheck  T  et al.  Postoperative pain and subcutaneous oxygen tension.  Lancet 1999;354 (9172) 41- 42PubMedGoogle ScholarCrossref
32.
Chura  JCBoyd  AArgenta  PA Surgical site infections and supplemental perioperative oxygen in colorectal surgery patients: a systematic review.  Surg Infect (Larchmt) 2007;8 (4) 455- 461PubMedGoogle ScholarCrossref
33.
Tornero-Campello  G Hyperoxia to reduce surgical site infection?  Anesthesiology 2007;106 (3) 632- 633PubMedGoogle ScholarCrossref
34.
Mauermann  WJNemergut  EC The anesthesiologist's role in the prevention of surgical site infections.  Anesthesiology 2006;105 (2) 413- 421PubMedGoogle ScholarCrossref
35.
Rothen  HUSporre  BEngberg  GWegenius  GReber  AHedenstierna  G Prevention of atelectasis during general anaesthesia.  Lancet 1995;345 (8962) 1387- 1391PubMedGoogle ScholarCrossref
36.
Kuebler  WM Inflammatory pathways and microvascular responses in the lung.  Pharmacol Rep 2005;57 ((suppl)) 196- 205PubMedGoogle Scholar
37.
Joyce  CJBaker  ABKennedy  RR Gas uptake from an unventilated area of lung: computer model of absorption atelectasis.  J Appl Physiol 1993;74 (3) 1107- 1116PubMedGoogle Scholar
38.
Lindberg  PGunnarsson  LTokics  L  et al.  Atelectasis and lung function in the postoperative period.  Acta Anaesthesiol Scand 1992;36 (6) 546- 553PubMedGoogle ScholarCrossref
39.
Akça  OPodolsky  AEisenhuber  E  et al.  Comparable postoperative pulmonary atelectasis in patients given 30% or 80% oxygen during and 2 hours after colon resection.  Anesthesiology 1999;91 (4) 991- 998PubMedGoogle ScholarCrossref
40.
Hedenstierna  G Atelectasis and its prevention during anaesthesia.  Eur J Anaesthesiol 1998;15 (4) 387- 390PubMedGoogle ScholarCrossref
41.
Edmark  LKostova-Aherdan  KEnlund  MHedenstierna  G Optimal oxygen concentration during induction of general anesthesia.  Anesthesiology 2003;98 (1) 28- 33PubMedGoogle ScholarCrossref
42.
Dellinger  EP Increasing inspired oxygen to decrease surgical site infection: time to shift the quality improvement research paradigm.  JAMA 2005;294 (16) 2091- 2092PubMedGoogle ScholarCrossref
43.
Nunn  JF Clinical aspects of the interaction between nitrous oxide and vitamin B12 Br J Anaesth 1987;59 (1) 3- 13PubMedGoogle ScholarCrossref
44.
Myles  PSLeslie  KSilbert  BPaech  MJPeyton  P A review of the risks and benefits of nitrous oxide in current anaesthetic practice.  Anaesth Intensive Care 2004;32 (2) 165- 172PubMedGoogle Scholar
45.
Parbrook  GD Leucopenic effects of prolonged nitrous oxide treatment.  Br J Anaesth 1967;39 (2) 119- 127PubMedGoogle ScholarCrossref
46.
Fleischmann  ELenhardt  RKurz  A  et al. Outcomes Research Group, Nitrous oxide and risk of surgical wound infection: a randomised trial.  Lancet 2005;366 (9491) 1101- 1107PubMedGoogle ScholarCrossref
47.
Jonsson  KJensen  JAGoodson  WH  IIIWest  JMHunt  TK Assessment of perfusion in postoperative patients using tissue oxygen measurements.  Br J Surg 1987;74 (4) 263- 267PubMedGoogle ScholarCrossref
48.
Hartmann  MJonsson  KZederfeldt  B Importance of dehydration in anastomotic and subcutaneous wound healing: an experimental study in rats.  Eur J Surg 1992;158 (2) 79- 82PubMedGoogle Scholar
49.
Gendall  KARaniga  SKennedy  RFrizelle  FA The impact of obesity on outcome after major colorectal surgery.  Dis Colon Rectum 2007;50 (12) 2223- 2237PubMedGoogle ScholarCrossref
50.
Kabon  BNagele  AReddy  D  et al.  Obesity decreases perioperative tissue oxygenation.  Anesthesiology 2004;100 (2) 274- 280PubMedGoogle ScholarCrossref
51.
Bassler  DFerreira-Gonzalez  IBriel  M  et al.  Systematic reviewers neglect bias that results from trials stopped early for benefit.  J Clin Epidemiol 2007;60 (9) 869- 873PubMedGoogle ScholarCrossref
52.
Bratzler  DWHouck  PMSurgical Infection Prevention Guidelines Writers Workgroup, Antimicrobial prophylaxis for surgery: an advisory statement from the National Surgical Infection Prevention Project.  Clin Infect Dis 2004;38 (12) 1706- 1715PubMedGoogle ScholarCrossref
53.
Tanner  JMoncaster  KWoodings  D Preoperative hair removal: a systematic review.  J Perioper Pract 2007;17 (3) 118- 132PubMedGoogle Scholar
Review
April 20, 2009

Perioperative Supplemental Oxygen Therapy and Surgical Site Infection: A Meta-analysis of Randomized Controlled Trials

Author Affiliations

Author Affiliations: Department of Surgery, Price Institute of Surgical Research (Drs Qadan and Mahid), and Departments of Anesthesiology and Perioperative Medicine (Dr Ak[[ccedil]]a), Epidemiology and Population Health (Dr Hornung), and Surgery (Dr Polk), University of Louisville School of Medicine, Louisville, Kentucky; and Outcomes Research Consortium, Louisville (Dr Ak[[ccedil]]a).

Arch Surg. 2009;144(4):359-366. doi:10.1001/archsurg.2009.1
Abstract

Objective  To conduct a meta-analysis of randomized controlled trials in which high inspired oxygen concentrations were compared with standard concentrations to assess the effect on the development of surgical site infections (SSIs).

Data Sources  A systematic literature search was conducted using the MEDLINE, EMBASE, and Cochrane databases and included a manual search of references of original articles, poster presentations, and abstracts from major meetings (“gray” literature).

Study Selection  Twenty-one of 2167 articles met the inclusion criteria. Of these, 5 randomized controlled trials (3001 patients) assessed the effect of perioperative supplemental oxygen use on the SSI rate. Studies used a treatment-inspired oxygen concentration of 80%. Maximum follow-up was 30 days.

Data Extraction  Data were abstracted by 3 independent reviewers using a standardized data collection form. Relative risks were reported using a fixed-effects model. Results were subjected to publication bias testing and sensitivity analyses.

Data Synthesis  Infection rates were 12.0% in the control group and 9.0% in the hyperoxic group, with relative risk reduction of 25.3% (95% confidence interval [CI], 8.1%-40.1%) and absolute risk reduction of 3.0% (1.1%-5.3%). The overall risk ratio was 0.742 (95% CI, 0.599-0.919; P = .006). The benefit from increasing oxygen concentration was greater in colorectal-specific procedures, with a risk ratio of 0.556 (95% CI, 0.383-0.808; P = .002).

Conclusions  Perioperative supplemental oxygen therapy exerts a significant beneficial effect in the prevention of SSIs. We recommend its use along with maintenance of normothermia, meticulous glycemic control, and preservation of intravascular volume perioperatively in the prevention of SSIs.

×