[Skip to Navigation]
Sign In
Figure 1. 
A frontal plain abdominal radiograph obtained in the supine position demonstrates distended loops of bowel and extensive hepatic portal venous gas (arrows). This finding was missed on the initial read of the plain radiograph.

A frontal plain abdominal radiograph obtained in the supine position demonstrates distended loops of bowel and extensive hepatic portal venous gas (arrows). This finding was missed on the initial read of the plain radiograph.

Figure 2. 
Axial (A) and coronal (B) views of contrast-enhanced computed tomographic images of the liver with extensive hepatic portal venous gas (arrows). Hepatic portal venous gas in a patient with peritonitis is an ominous finding with a potentially fatal outcome that warrants immediate emergency surgery.

Axial (A) and coronal (B) views of contrast-enhanced computed tomographic images of the liver with extensive hepatic portal venous gas (arrows). Hepatic portal venous gas in a patient with peritonitis is an ominous finding with a potentially fatal outcome that warrants immediate emergency surgery.

Figure 3. 
Axial (A) and sagittal (B) computed tomographic images from a case with benign portal venous gas in the left lobe of the liver (arrows) with emphysematous gastritis. Under watchful waiting, the patient did well and recovered completely without any untoward sequelae.

Axial (A) and sagittal (B) computed tomographic images from a case with benign portal venous gas in the left lobe of the liver (arrows) with emphysematous gastritis. Under watchful waiting, the patient did well and recovered completely without any untoward sequelae.

Figure 4. 
Proposed clinical algorithm for management of patients in whom hepatic portal venous gas (HPVG) is found by plain abdominal radiograph or abdominal computed tomographic (CT) scan. IBD indicates inflammatory bowel disease; PUD, peptic ulcer disease.

Proposed clinical algorithm for management of patients in whom hepatic portal venous gas (HPVG) is found by plain abdominal radiograph or abdominal computed tomographic (CT) scan. IBD indicates inflammatory bowel disease; PUD, peptic ulcer disease.

Table. 
Critical Articles in the Literature of HPVG
Critical Articles in the Literature of HPVG
1.
Wolfe  JNEvans  WA Gas in the portal veins of the liver in infants: a roentgenographic demonstration with postmortem anatomical correlation.  Am J Roentgenol Radium Ther Nucl Med 1955;74 (3) 486- 488PubMedGoogle Scholar
2.
Susman  NSenturia  HR Gas embolization of the portal venous system.  Am J Roentgenol Radium Ther Nucl Med 1960;83847- 850PubMedGoogle Scholar
3.
Wiot  JFFelson  B Gas in the portal venous system.  Am J Roentgenol Radium Ther Nucl Med 1961;86920- 929PubMedGoogle Scholar
4.
Lazar  HP Survival following portal venous air embolization: report of a case.  Am J Dig Dis 1965;10259- 264PubMedGoogle ScholarCrossref
5.
Liebman  PRPatten  MTManny  JBenfield  JRHechtman  HB Hepatic-portal venous gas in adults: etiology, pathophysiology and clinical significance.  Ann Surg 1978;187 (3) 281- 287PubMedGoogle ScholarCrossref
6.
Kinoshita  HShinozaki  MTanimura  H  et al.  Clinical features and management of hepatic portal venous gas: four case reports and cumulative review of the literature.  Arch Surg 2001;136 (12) 1410- 1414PubMedGoogle ScholarCrossref
7.
Faberman  RSMayo-Smith  WW Outcome of 17 patients with portal venous gas detected by CT.  AJR Am J Roentgenol 1997;169 (6) 1535- 1538PubMedGoogle ScholarCrossref
8.
Schindera  STTriller  JVock  PHoppe  H Detection of hepatic portal venous gas: its clinical impact and outcome.  Emerg Radiol 2006;12 (4) 164- 170PubMedGoogle ScholarCrossref
9.
Sebastià  CQuiroga  SEspin  EBoye  RAlvarez-Castells  AArmengol  M Portomesenteric vein gas: pathologic mechanisms, CT findings, and prognosis.  Radiographics 2000;20 (5) 1213- 1224, discussion 1224-1226PubMedGoogle ScholarCrossref
10.
Sisk  PB Gas in the portal venous system.  Radiology 1961;77103- 106Google ScholarCrossref
11.
Masannat  YMasannat  YShatnawei  A Gallstone ileus: a review.  Mt Sinai J Med 2006;73 (8) 1132- 1134PubMedGoogle Scholar
12.
Kasznia-Brown  JCook  C Radiological signs of pneumoperitoneum: a pictorial review.  Br J Hosp Med (Lond) 2006;67 (12) 634- 639PubMedGoogle Scholar
13.
Wiesner  WMortele  KJGlickman  JNJi  HRos  PR Pneumatosis intestinalis and portomesenteric venous gas in intestinal ischemia: correlation of CT findings with severity of ischemia and clinical outcome.  AJR Am J Roentgenol 2001;177 (6) 1319- 1323PubMedGoogle ScholarCrossref
14.
Arnon  RGFishbein  JF Portal venous gas in the pediatric age group: review of the literature and report of twelve new cases.  J Pediatr 1971;79 (2) 255- 259PubMedGoogle ScholarCrossref
15.
See  CElliott  D Images in clinical medicine: pneumatosis intestinalis and portal venous gas.  N Engl J Med 2004;350 (4) e3PubMedGoogle ScholarCrossref
16.
Berne  TVMeyers  HIDonovan  AJ Gas in the portal vein of adults with necrotizing enteropathy.  Am J Surg 1970;120 (2) 203- 209PubMedGoogle ScholarCrossref
17.
Sibbald  WJSweeney  JPInwood  MJ Portal venous gas (PVG) as an indication for heparinization.  Am J Surg 1972;124 (5) 690- 693PubMedGoogle ScholarCrossref
18.
Kriegshauser  JSReading  CCKing  BFWelch  TJ Combined systemic and portal venous gas: sonographic and CT detection in two cases.  AJR Am J Roentgenol 1990;154 (6) 1219- 1221PubMedGoogle ScholarCrossref
19.
Katz  BHSchwartz  SSVender  RJ Portal venous gas following a barium enema in a patient with Crohn's colitis: a benign finding.  Dis Colon Rectum 1986;29 (1) 49- 51PubMedGoogle ScholarCrossref
20.
Birnberg  FAGore  RMShragg  BMargulis  AR Hepatic portal venous gas: a benign finding in a patient with ulcerative colitis.  J Clin Gastroenterol 1983;5 (1) 89- 91PubMedGoogle ScholarCrossref
21.
Haber  I Hepatic portal vein gas following colonoscopy in ulcerative colitis: report of a case.  Acta Gastroenterol Belg 1983;46 (1-2) 14- 17PubMedGoogle Scholar
22.
Wiesner  WMortele  KJGlickman  JNJi  HRos  PR Portal-venous gas unrelated to mesenteric ischemia.  Eur Radiol 2002;12 (6) 1432- 1437PubMedGoogle ScholarCrossref
23.
Celoria  GCoe  NP Does the presence of hepatic portal venous gas mandate an operation? A reassessment.  South Med J 1990;83 (5) 592- 594PubMedGoogle ScholarCrossref
24.
Foster  SCSchneider  BSeaman  WB Gas-containing pyogenic intrahepatic abscesses.  Radiology 1970;94 (3) 613- 618PubMedGoogle ScholarCrossref
25.
Yoshida  MMitsuo  MKutsumi  H  et al.  A successfully treated case of multiple liver abscesses accompanied by portal venous gas.  Am J Gastroenterol 1996;91 (11) 2423- 2425PubMedGoogle Scholar
26.
Zielke  AHasse  CNies  CRothmund  M Hepatic-portal venous gas in acute colonic diverticulitis.  Surg Endosc 1998;12 (3) 278- 280PubMedGoogle ScholarCrossref
27.
Tedesco  FJStanley  RJ Hepatic portal vein gas without bowel infarction or necrosis.  Gastroenterology 1975;69 (1) 240- 243PubMedGoogle Scholar
28.
Nakao  AIwagaki  HIsozaki  H  et al.  Portal venous gas associated with splenic abscess secondary to colon cancer.  Anticancer Res 1999;19 (6C) 5641- 5644PubMedGoogle Scholar
29.
Quirke  TE Hepatic-portal venous gas associated with ileus.  Am Surg 1995;61 (12) 1084- 1086PubMedGoogle Scholar
30.
Lee  CSKuo  YCPeng  SM  et al.  Sonographic detection of hepatic portal venous gas associated with suppurative cholangitis.  J Clin Ultrasound 1993;21 (5) 331- 334PubMedGoogle ScholarCrossref
31.
Sonnenshein  MACone  LAAlexander  RM Diverticulitis with colovenous fistula and portal venous gas: report of two cases.  J Clin Gastroenterol 1986;8 (2) 195- 198PubMedGoogle ScholarCrossref
32.
Mallens  WMSchepers-Bok  RNicolai  JJJacobs  FAHeyerman  HG Portal and systemic venous gas in a patient with cystic fibrosis: CT findings.  AJR Am J Roentgenol 1995;165 (2) 338- 339PubMedGoogle ScholarCrossref
33.
Chen  KWShin  JSChi  CHCheng  L Seizure: a rare and transient cause of portal venous gas.  Am J Gastroenterol 1997;92 (2) 351- 352PubMedGoogle Scholar
34.
Saksena  MHarisinghani  MGWittenberg  JMueller  PR Case report: hepatic portal venous gas. Transient radiographic finding associated with colchicine toxicity.  Br J Radiol 2003;76 (911) 835- 837PubMedGoogle ScholarCrossref
35.
Delamarre  JCapron  JPDupas  JLDeschepper  BJouet-Gondry  CRudelli  A Spontaneous portal venous gas in a patient with Crohn's ileocolitis.  Gastrointest Radiol 1991;16 (1) 38- 40PubMedGoogle ScholarCrossref
36.
Niki  MShimizu  IHorie  T  et al.  Hepatic portal venous gas disappearing within 24 hours.  Intern Med 2002;41 (11) 950- 952PubMedGoogle ScholarCrossref
37.
Mognol  PChosidow  DMarmuse  JP Hepatic portal gas due to gastro-jejunal anastomotic leak after laparoscopic gastric bypass.  Obes Surg 2005;15 (2) 278- 281PubMedGoogle ScholarCrossref
38.
Herman  JBLevine  MSLong  WB Portal venous gas as a complication of ERCP and endoscopic sphincterotomy.  Am J Gastroenterol 1995;90 (5) 828- 829PubMedGoogle Scholar
39.
Barthet  MMembrini  PBernard  JPSahel  J Hepatic portal venous gas after endoscopic biliary sphincterotomy.  Gastrointest Endosc 1994;40 (2, pt 1) 261- 263PubMedGoogle ScholarCrossref
40.
Blind  PJOberg  LHedberg  B Hepatic portal vein gas following endoscopic retrograde cholangiography with sphincterotomy: case report.  Eur J Surg 1991;157 (4) 299- 300PubMedGoogle Scholar
41.
Simmons  TC Hepatic portal venous gas due to endoscopic sphincterotomy.  Am J Gastroenterol 1988;83 (3) 326- 328PubMedGoogle Scholar
42.
Nguyen  HNPurucker  ERiehl  JMatern  S Hepatic portal venous gas following emergency endoscopic sclerotherapy of gastric varices.  Hepatogastroenterology 1998;45 (23) 1767- 1769PubMedGoogle Scholar
43.
Pfaffenbach  BWegener  MBohmeke  T Hepatic portal venous gas after transgastric EUS-guided fine-needle aspiration of an accessory spleen.  Gastrointest Endosc 1996;43 (5) 515- 518PubMedGoogle ScholarCrossref
44.
Benson  MD Adult survival with intrahepatic portal venous gas secondary to acute gastric dilatation, with a review of portal venous gas.  Clin Radiol 1985;36 (4) 441- 443PubMedGoogle ScholarCrossref
45.
Hughes  DGBarker  CS Adult survival with portal venous gas secondary to acute gastric dilation.  Clin Radiol 1986;37 (6) 603PubMedGoogle ScholarCrossref
46.
Radin  DRRosen  RSHalls  JM Acute gastric dilatation: a rare cause of portal venous gas.  AJR Am J Roentgenol 1987;148 (2) 279- 280PubMedGoogle ScholarCrossref
47.
Chezmar  JLNelson  RCBernardino  ME Portal venous gas after hepatic transplantation: sonographic detection and clinical significance.  AJR Am J Roentgenol 1989;153 (6) 1203- 1205PubMedGoogle ScholarCrossref
48.
Oei  TvanSonnenberg  EShankar  SMorrison  PRTuncali  KSilverman  SG Radiofrequency ablation of liver tumors: a new cause of benign portal venous gas.  Radiology 2005;237 (2) 709- 717PubMedGoogle ScholarCrossref
49.
Schmidt  AG Portal vein gas due to administration of fluids via the umbilical vein.  Radiology 1967;88 (2) 293- 294PubMedGoogle ScholarCrossref
50.
Bull  MJKaye  B Portal vein gas following double-contrast barium enema.  Br J Radiol 1985;58 (695) 1129- 1130PubMedGoogle ScholarCrossref
51.
Kees  CJHester  CL  Jr Portal vein gas following barium enema examination.  Radiology 1972;102 (3) 525- 526PubMedGoogle ScholarCrossref
52.
Stein  MGCrues  JV  IIIHamlin  JA Portal venous air associated with barium enema.  AJR Am J Roentgenol 1983;140 (6) 1171- 1172PubMedGoogle ScholarCrossref
53.
Shaw  ACooperman  AFusco  J Gas embolism produced by hydrogen peroxide.  N Engl J Med 1967;277 (5) 238- 241PubMedGoogle ScholarCrossref
54.
Griffiths  DMGough  MH Gas in the hepatic portal veins.  Br J Surg 1986;73 (3) 172- 176PubMedGoogle ScholarCrossref
55.
Paran  HEpstein  TGutman  MShapiro Feinberg  MZissin  R Mesenteric and portal vein gas: computerized tomography findings and clinical significance.  Dig Surg 2003;20 (2) 127- 132PubMedGoogle ScholarCrossref
56.
Peloponissios  NHalkic  NPugnale  M  et al.  Hepatic portal gas in adults: review of the literature and presentation of a consecutive series of 11 cases.  Arch Surg 2003;138 (12) 1367- 1370PubMedGoogle ScholarCrossref
57.
Kennedy  JHolt  CLRicketts  RR The significance of portal vein gas in necrotizing enterocolitis.  Am Surg 1987;53 (4) 231- 234PubMedGoogle Scholar
58.
Marston  A Causes of death in mesenteric arterial occlusion, I: local and general effects of devascularization of the bowel.  Ann Surg 1963;158952- 959PubMedGoogle ScholarCrossref
59.
Lai  CFChang  WTLiang  PCLien  WCWang  HPChen  WJ Pneumatosis intestinalis and hepatic portal venous gas after CPR.  Am J Emerg Med 2005;23 (2) 177- 181PubMedGoogle ScholarCrossref
60.
Shiotani  SKohno  MOhashi  NYamazaki  KNakayama  HWatanabe  K Postmortem computed tomographic (PMCT) demonstration of the relation between gastrointestinal (GI) distension and hepatic portal venous gas (HPVG).  Radiat Med 2004;22 (1) 25- 29PubMedGoogle Scholar
61.
Barsan  WGLevy  RCWeir  H Lidocaine levels during CPR: differences after peripheral venous, central venous, and intracardiac injections.  Ann Emerg Med 1981;10 (2) 73- 78PubMedGoogle ScholarCrossref
62.
Earls  JPDachman  AHColon  EGarrett  MGMolloy  M Prevalence and duration of postoperative pneumoperitoneum: sensitivity of CT vs left lateral decubitus radiography.  AJR Am J Roentgenol 1993;161 (4) 781- 785PubMedGoogle ScholarCrossref
63.
Schulze  CGBlum  UHaag  K Hepatic portal venous gas: imaging modalities and clinical significance.  Acta Radiol 1995;36 (4) 377- 380PubMedGoogle Scholar
64.
Brenner  DJHall  EJ Computed tomography—an increasing source of radiation exposure.  N Engl J Med 2007;357 (22) 2277- 2284PubMedGoogle ScholarCrossref
65.
Jones  B Massive gas embolism in E. coli septicemia.  Gastrointest Radiol 1981;6 (2) 161- 163PubMedGoogle ScholarCrossref
66.
Chau  TNLoke  TKLeung  VKLaw  STLai  MHHo  YW Hepatic portal venous gas complicating septic thrombophlebitis of the superior mesenteric vein.  Hong Kong Med J 2007;13 (1) 69- 72PubMedGoogle Scholar
67.
Yale  CEBalish  EWu  JP The bacterial etiology of pneumatosis cystoides intestinalis.  Arch Surg 1974;109 (1) 89- 94PubMedGoogle ScholarCrossref
68.
Christensen  MALu  CH Gas in the portal vein after air-contrast barium enema in a patient with inflammatory colitis.  South Med J 1982;75 (10) 1291- 1292PubMedGoogle ScholarCrossref
69.
Sadhu  VKBrennan  REMadan  V Portal vein gas following air-contrast barium enema in granulomatous colitis: report of a case.  Gastrointest Radiol 1979;4 (2) 163- 164PubMedGoogle ScholarCrossref
70.
Huycke  AMoeller  DD Hepatic portal venous gas after colonoscopy in granulomatous colitis.  Am J Gastroenterol 1985;80 (8) 637- 638PubMedGoogle Scholar
71.
Bilger  M Pneumatosis cystoides intestinalis in children; report of a case complicated with fatal pneumoperitoneum.  J Pediatr 1956;49 (4) 445- 449PubMedGoogle ScholarCrossref
72.
Karaosmanoğlu  DOktar  SOArac  MErbas  G Case report: portal and systemic venous gas in a patient after lumbar puncture.  Br J Radiol 2005;78 (932) 767- 769PubMedGoogle ScholarCrossref
73.
Negro  UVerdecchia  MPaci  E  et al.  Hepatic portal venous gas in a patient with enterovascular fistula.  Abdom Imaging 2006;31 (6) 706- 709PubMedGoogle ScholarCrossref
74.
Oktar  SOKaraosmanoglu  DYucel  C  et al.  Portomesenteric venous gas: imaging findings with an emphasis on sonography.  J Ultrasound Med 2006;25 (8) 1051- 1058PubMedGoogle Scholar
75.
Ruíz  DSde Perrot  TMajno  PE A case of portal venous gas secondary to acute appendicitis detected on gray scale sonography but not computed tomography.  J Ultrasound Med 2005;24 (3) 383- 386PubMedGoogle Scholar
76.
Patriquin  LKassarjian  ABarish  M  et al.  Postmortem whole-body magnetic resonance imaging as an adjunct to autopsy: preliminary clinical experience.  J Magn Reson Imaging 2001;13 (2) 277- 287PubMedGoogle ScholarCrossref
77.
Huurman  VAVisser  LGSteens  SCTerpstra  OTSchaapherder  AF Persistent portal venous gas.  J Gastrointest Surg 2006;10 (5) 783- 785PubMedGoogle ScholarCrossref
Review
June 15, 2009

Hepatic Portal Venous Gas: The ABCs of Management

Author Affiliations

Author Affiliations: Tufts University School of Medicine (Dr Nelson) and Departments of Surgery (Drs Millington, Hertl, Warshaw, and Conrad), Radiology (Dr Sahani), and Medicine, Gastrointestinal Unit (Dr Chung), Massachusetts General Hospital, Boston, and Section of Gastroenterology, Medizinische Klinik Innenstadt, University of Munich, Munich, Germany (Dr Bauer).

Arch Surg. 2009;144(6):575-581. doi:10.1001/archsurg.2009.88
Abstract

Objective  To review the use of computed tomography (CT) and radiography in managing hepatic portal venous gas (HPVG) at a university-affiliated tertiary care center and in the literature. Hepatic portal venous gas is frequently associated with acute mesenteric ischemia, accounting for most of the HPVG-associated mortality. While early studies were necessarily dependent on plain abdominal radiography, modern high-resolution CT has revealed a host of benign conditions in which HPVG has been reported that do not require emergent surgery.

Data Sources  Patient records from our institution over the last 10 years and relevant studies from BioMed Central, CENTRAL, PubMed, and PubMed Central. In addition, references cited in selected works were also used as source data.

Study Selection  Patient records were selected if the CT or radiograph findings matched the term hepatic portal venous gas. Studies were selected based on the search terms hepatic portal venous gas or portal venous gas.

Data Extraction  Quantitative and qualitative data were quoted directly from cited work.

Data Synthesis  Early studies of HPVG were based on plain abdominal radiography and a literature survey in 1978 found an associated mortality rate of 75%, primarily due to ischemic bowel disease. Modern abdominal CT has resulted in the detection of HPVG in more benign conditions, and a second literature survey in 2001 found a total mortality of only 39%. While the pathophysiology of HPVG is, as yet, unclear, changing abdominal imaging technology has altered the significance of this radiologic finding. Hepatic portal venous gas therefore predicts high risk of mortality (>50%) if detected by plain radiography or by CT in a patient with additional evidence of necrotic bowel. If detected by CT in patients after surgical or endoscopic manipulation, the clinician is advised that there is no evidence of increased risk. If HPVG is detected by CT in patients with active peptic ulcer disease, intestinal obstruction and/or dilatation, or mucosal diseases such as Crohn disease or ulcerative colitis, caution is warranted, as risk of death may approach 20% to 30%.

Conclusion  The finding of HPVG alone cannot be an indication for emergency exploration, and we have developed an evidence-based algorithm to guide the clinician in management of patients with HPVG.

Hepatic portal venous gas (HPVG) was first described in abdominal plain radiographs in 1955 by Wolfe and Evans1 in 6 neonates who died secondary to necrotic bowels, followed by reports of HPVG in 5 adults who died2,3 and the first reported survivor in 1965.4 Liebman and colleagues5 analyzed all cases of HPVG reported in the literature by 1978 and found an oft-cited mortality rate of 75%, thereby codifying the link between HPVG and risk of imminent death and the corresponding maxim that HPVG demands laparotomy.

Hepatic portal venous gas is a rare radiologic finding, with only 182 cases documented in the literature by 2001.6 Retrospective reviews of computed tomographic (CT) scans identified 17 cases in 14 000 at 1 academic medical center7 and 11 in 19 000 at another.8 Hepatic portal venous gas is defined radiologically as tubular areas of decreased attenuation in the liver periphery.9 This definition was derived from the work of Sisk,10 who injected radiologic contrast into the portal vein and detected it in the liver periphery, within 2 cm of the capsule. Proof of the localization of HPVG to the portal sinusoids came from Wiot and Felson,3 who clamped all hepatic vessels during an autopsy, injected barium into the portal circulation, and demonstrated mixture of the gas and contrast. Portal venous gas can be distinguished from aerobilia, an indication of gallstone ileus, where air is found centrally in the biliary tree,11 and from pneumoperitoneum, where gas is found outside the liver capsule, due to perforation of a hollow viscous.12

The left lobe of the liver is predisposed to develop HPVG,8,9 possibly because of peculiarities in hepatic venous anatomy. Males and females are equally likely to develop HPVG.5,6 In approximately 50% of reported cases, HPVG presents with pneumatosis intestinalis (PI), gas within the intestinal wall.7,13,14 It is generally presumed that PI ascends from the draining venous mesentery and condenses in the portal venous system15; therefore, PI and HPVG represent progressive steps in a single process.1 Experimental support for this sequence is scarce, although air injected into the submucosa16 or mesenteric veins2 of dog intestines was observed in the portal venous system.

Remarkably, in several early works, surgeons reported air bubbles flowing in the mesenteric veins of patients with preoperative HPVG. In 1 case, the surgeons transilluminated the mesentery and described the veins as “resembling the bubbles of gas seen in certain neon light signs.”2(p848) In another, the surgeons noted “intravascular gas seen in all the mesenteric and portal veins” with “a large amount of frothy air bubbles” in a tear in the liver capsule.17 Modern ultrasonography studies have visualized air emboli moving through the hepatic portal system in real time in patients with HPVG.18

Report of cases
Case 1

A 63-year-old woman presented to the emergency department complaining of constipation and bilious vomiting. She denied bowel movements over the preceding 7 days and had developed escalating, diffuse abdominal pain, bloating, and vomiting. During a prior episode of abdominal discomfort months earlier, CT examination discovered a lung mass, and she was diagnosed with stage IIIB non–small cell lung carcinoma, for which she initiated treatment days prior. Her vital signs were within normal limits, but her abdomen was tense and rigid. Laboratory analysis was notable for leukocytosis. A plain abdominal radiograph demonstrated diffuse gaseous distention of the small and large bowel, and HPVG was visible (Figure 1). A contrast-enhanced abdominal CT confirmed diffuse gaseous distention of the small bowel and colon with pneumatosis of the colon and portal and mesenteric venous gas. In addition, free peritoneal air was present, consistent with hollow viscus perforation (Figure 2). Unfortunately, within hours of the CT scan, the patient died in shock. The primary cause of her gastrointestinal disease was never elucidated.

Case 2

A 56-year-old man presented to the emergency department complaining of crampy abdominal pain with diarrhea, nausea, and vomiting over the preceding 5 days. He described several episodes of melena and admitted to having lost 30 lb over preceding months. He denied hemoptysis, fever, chills, or night sweats. He admitted to frequent use of ibuprofen to treat chronic lower back pain. Vital signs were stable, and on examination, his abdomen was soft with active bowel sounds and no rebound or guarding. Rectal examination results were positive for occult blood. Serum lactate level was not elevated. An abdominal CT imaging study was performed, and the results supported a diagnosis of nonsteroidal anti-inflammatory drug–induced gastritis, with a mild pneumatosis of the gastric wall and HPVG (Figure 3), raising concern of a perforation. Surgical and gastroenterologic services were consulted, but, given the absence of peritonitis, it was decided to treat conservatively. On the fourth hospital day, he underwent an upper gastrointestinal tract series, revealing a 40-mm, nonbleeding, cratered gastric ulcer in the cardia. The patient was discharged after 2 weeks with significant clinical improvement.

Comment
Recent evidence

In the half century since HPVG was first described, it has been reported in many nonfatal conditions, such as Crohn disease,19 ulcerative colitis,20,21 graft-vs-host disease,22 bowel obstruction, pseudo-obstruction,23 bacterial abscesses,22,24-28 diverticulitis,3 paralytic ileus,29 suppurative cholangitis,30 and colovenous fistulae.31 Hepatic portal venous gas has been described in a number of nonsurgical conditions, including cystic fibrosis,32 seizures,33 and colchicine toxicity,34 although secondary effects, such as ileus, cannot be excluded. Frequently, there is no immediate risk of mortality, for example, in patients presenting with inflammatory bowel disease and HPVG.35,36 Finally, a substantial literature exists on iatrogenic HPVG, with HPVG observed in patients after laproscopy37 and endoscopic retrograde colangiopancreatography38-41 as well as other endoscopic procedures,42,43 gastric dilatation,44-46 liver transplantation,47 radiofrequency tumor ablation,48 arterial catheterization,49 and enema.50-53 As early as 1971, higher survival rates were recognized in iatrogenic HPVG-associated illness compared with natural pathologies,14 and in 1986, experts were already urging surgeons to avoid laparotomy in patients without toxic reaction with iatrogenic HPVG.54

In a recent survey of HPVG literature, Kinoshita and colleagues6 reported 39% mortality among all 182 cases reported by 2001. Although smaller case series cite both lower7,8 and higher mortality rates for HPVG-associated disease,13,55,56 these studies included fewer than 20 patients each. This is obviously a significant reduction from the 75% mortality seen in 1978, itself an “improvement” over earlier estimates.5 The observed reduction in mortality was driven by an increase in the proportion of nonfatal conditions reported with HPVG and a corresponding decrease in the proportion of HPVG associated with mesenteric ischemia. Bowel necrosis accounted for 72% of diagnoses in the Liebman et al survey5 in 1978, but only 43% of the diagnoses in reports of HPVG-positive patients surveyed by Kinoshita et al6 in 2001, although the mortality in these patients remained high (75%, n=79). Kinoshita et al found that the mortality of patients with HPVG with Crohn disease, ulcerative colitis, intraperitoneal tumors, cholangitis, pancreatitis, and nonfulminant hepatitis was 0% (n=28). A variety of conditions present intermediate mortality rates: 30% in patients with abscesses (n=20), 25% with gastric ulcers (n=7), and 21% with digestive tract dilatation (n=21).6 Collectively, the fraction of HPVG cases associated with diseases other than ischemic or necrotic bowel rose from 30%5 to 51%6 when the 2 studies were compared.

Hepatic portal venous gas therefore remains an ominous sign in the specific context of bowel ischemia or necrosis. Hepatic portal venous gas has been identified as a risk factor for surgical intervention and increased mortality57 and the degree of bowel ischemia may be correlated with the likelihood of HPVG or PI.6,13 Experimental occlusion of the mesenteric arteries of dogs resulting in infarction also results in HPVG, supporting mucosal ischemia as playing a mechanistic role.58 Two reports describe postmortem HPVG after cardiopulmonary resuscitation,59,60 linking ischemia and HPVG, as cardiac output during cardiopulmonary resuscitation is poor.61 It is presumed that ischemic insult or frank necrosis results in mucosal disruption, although this mechanism has not yet been proven.

We propose that the increase in benign HPVG-associated conditions is due to the adoption of CT scanning. The original HPVG literature of the 1950s and 1960s was based on plain radiographs,1,2 primarily left lateral decubitus views.5,16 However, CT is superior for detection of intra-abdominal gas, demonstrated in studies of pneumoperitoneum. Increased sensitivity with CT has made it possible to detect mild HPVG, while reliance on plain radiography captures only scenarios wherein a large volume of gas accumulates.8,62,63 In addition, remarkable increases in the volume of patients undergoing advanced imaging techniques over time have been demonstrated,64 increasing the prevalence of HPVG. Digital CT images also provide an opportunity to manipulate the images for ideal viewing, and many authors note that a “lung-window” CT setting permits easy identification of both HPVG and PI,8,9 although other settings are also advised.7

Pathophysiology

There is no evidence available to date to identify the nature of the gas observed in imaging studies. The leading hypotheses are (1) microbe-derived gas production and (2) absorbed intraluminal air.

No clear experimental or natural data describe how gas production secondary to microbial metabolism results in HPVG.65 Bacteremic liver metastases can result in in situ gas production,24,25 but this is rare. Septic phlebitis can result in gaseous accumulations in the portal system, or gas generated in abscesses subjacent to inflamed mesentery could enter the vasculature,3,22,26,27,66 although few data support these models. Regardless of anatomical route, microbe-derived gases would be hypothesized to be molecularly and atomically distinct from swallowed intraluminal air. Indeed, the cystic gas of pneumatosis cystoids intestinalis has been shown to be hydrogen gas, strongly supporting a bacteriologic etiology for this distinct pathology,67 and similar analyses of HPVG would be convincing support for a microbial origin.

The majority of patients in both the Liebman et al5 and Kinoshita et al6 studies demonstrated ischemic bowel, disrupted mucosa, or increased intraluminal pressure. It is hypothesized that luminal air enters the capillary veins either by an impaired epithelial barrier or by increased intraluminal pressure. Indeed, in a large number of “natural experiments,” HPVG has been demonstrated in patients with mucosa disrupted by inflammatory bowel disease and intraluminal pressures increased by enema19,20,52,68,69 or colonoscopy.21,70 Pneumatosis intestinalis was generated experimentally in cadavers with ulcerated mucosa by application of intraluminal air pressure.14,71 Shaw et al53 were able to chemically reproduce these effects in intact dog intestines using hydrogen peroxide enemas, wherein hydrogen peroxide bypassed the epithelium and released oxygen gas on interacting with intracellular catalase enzymes or iron, causing oxygenation of the affected tissues and the formation of bubbles in the mucosa, draining mesentery, and portal veins.

Intraluminal and microbial origins for HPVG are not mutually exclusive. Rather, it is possible that these are separate pathways by which patients can arrive at the radiologic finding of HPVG. In support of this, sepsis alone was observed in 2 of 64 patients with HPVG in the Liebman et al study,5 and 26 of 182 patients in the Kinoshita et al study had an infectious etiology in the absence of other bowel disease.6 These data suggest that a microbial origin for HPVG may therefore represent an independent mechanism in a minority of patients with HPVG, unrelated to that seen in necrotic bowel.

As noted earlier, HPVG has also been detected by ultrasonography,18,26,47,72-75 where the HPVG appears as hyperechoic foci in the background of the liver parenchyma. Ultrasonography has the advantages of low cost, bedside imaging, and a lack of radiation exposure to the patient. It is possible that ultrasonography may prove even more sensitive than CT,74,75 although this requires formal analysis. An even more limited literature exists describing magnetic resonance imaging–based identification of HPVG.76

Conclusions and recommendations

While HPVG was clearly an ominous radiologic finding in previous decades, today it is a puzzling finding that may confound patient management (Table). The development of CT has created more opportunities to visualize gas in the portal system, revealing a host of benign conditions. The main conclusion offered by this review is that radiologic detection of HPVG by CT should not determine clinical or surgical management per se, rather disease severity should. To this effect, a management algorithm is proposed in Figure 4 and is summarized by the mnemonic “ABC.” Urgent laparotomy (“aggressive management”) is recommended for (1) patients in whom HPVG is detected by CT with concurrent signs of bowel necrosis or ischemia and (2) patients in whom HPVG is detected by plain abdominal radiograph, as decades of study have demonstrated serious risks, with mortality approximated at 75% for both groups. Case 1 represents this scenario, presenting with HPVG on both abdominal radiography and CT scan with signs of peritonitis. It is possible that the patient's life could have been saved had she been taken to the operating room instead of the CT scanner, as CT served only to confirm the extent of her disease. Therefore, this patient exemplifies the value of careful examination of abdominal plain radiographs, often overlooked by physicians accustomed to reliance on the sensitivity of the CT scanner.

Patients with more equivocal presentation and HPVG—mucosal disruption, bowel distention, abscesses, or gastric ulcers, as examples—should be monitored intensely with a reduced threshold for surgical correction under appropriate conditions (“be careful”). These patients may be at risk for mortality as high 20% to 30%, based on the Liebman et al5 and Kinoshita et al6 studies. Case 2 exemplifies the difficulty of HPVG observed in a patient with ambiguous findings. This patient was successfully managed conservatively, despite the fact that HPVG would have once been an indication for laparotomy.

Finally, patients who present with HPVG and nonurgent conditions, or HPVG postoperatively, should be treated conservatively (“conservative management”). In this context, watchful waiting is prudent, as patients have been shown to resolve their nonurgent HPVG over “extremely variable”54 lengths of time—in as short as minutes,54 as long as 6 weeks77—with negligible risk of mortality.

Correspondence: Claudius Conrad, MD, PhD, PhD, Harvard Medical School and Harvard Stem Cell Institute, Massachusetts General Hospital, Department of Surgery, 55 Fruit St, Boston, MA 02114 (cconrad1@partners.org).

Accepted for Publication: May 22, 2008.

Author Contributions:Study concept and design: Nelson, Millington, Bauer, Warshaw, and Conrad. Acquisition of data: Nelson, Millington, Warshaw, and Conrad. Analysis and interpretation of data: Nelson, Sahani, Chung, Bauer, Hertl, Warshaw, and Conrad. Drafting of the manuscript: Nelson, Hertl, Warshaw, and Conrad. Critical revision of the manuscript for important intellectual content: Nelson, Millington, Sahani, Chung, Bauer, Hertl, Warshaw, and Conrad. Statistical analysis: Bauer, Warshaw, and Conrad. Obtained funding: Conrad. Administrative, technical, and material support: Bauer, Warshaw, and Conrad. Study supervision: Chung, Warshaw, and Conrad.

Financial Disclosure: None reported.

References
1.
Wolfe  JNEvans  WA Gas in the portal veins of the liver in infants: a roentgenographic demonstration with postmortem anatomical correlation.  Am J Roentgenol Radium Ther Nucl Med 1955;74 (3) 486- 488PubMedGoogle Scholar
2.
Susman  NSenturia  HR Gas embolization of the portal venous system.  Am J Roentgenol Radium Ther Nucl Med 1960;83847- 850PubMedGoogle Scholar
3.
Wiot  JFFelson  B Gas in the portal venous system.  Am J Roentgenol Radium Ther Nucl Med 1961;86920- 929PubMedGoogle Scholar
4.
Lazar  HP Survival following portal venous air embolization: report of a case.  Am J Dig Dis 1965;10259- 264PubMedGoogle ScholarCrossref
5.
Liebman  PRPatten  MTManny  JBenfield  JRHechtman  HB Hepatic-portal venous gas in adults: etiology, pathophysiology and clinical significance.  Ann Surg 1978;187 (3) 281- 287PubMedGoogle ScholarCrossref
6.
Kinoshita  HShinozaki  MTanimura  H  et al.  Clinical features and management of hepatic portal venous gas: four case reports and cumulative review of the literature.  Arch Surg 2001;136 (12) 1410- 1414PubMedGoogle ScholarCrossref
7.
Faberman  RSMayo-Smith  WW Outcome of 17 patients with portal venous gas detected by CT.  AJR Am J Roentgenol 1997;169 (6) 1535- 1538PubMedGoogle ScholarCrossref
8.
Schindera  STTriller  JVock  PHoppe  H Detection of hepatic portal venous gas: its clinical impact and outcome.  Emerg Radiol 2006;12 (4) 164- 170PubMedGoogle ScholarCrossref
9.
Sebastià  CQuiroga  SEspin  EBoye  RAlvarez-Castells  AArmengol  M Portomesenteric vein gas: pathologic mechanisms, CT findings, and prognosis.  Radiographics 2000;20 (5) 1213- 1224, discussion 1224-1226PubMedGoogle ScholarCrossref
10.
Sisk  PB Gas in the portal venous system.  Radiology 1961;77103- 106Google ScholarCrossref
11.
Masannat  YMasannat  YShatnawei  A Gallstone ileus: a review.  Mt Sinai J Med 2006;73 (8) 1132- 1134PubMedGoogle Scholar
12.
Kasznia-Brown  JCook  C Radiological signs of pneumoperitoneum: a pictorial review.  Br J Hosp Med (Lond) 2006;67 (12) 634- 639PubMedGoogle Scholar
13.
Wiesner  WMortele  KJGlickman  JNJi  HRos  PR Pneumatosis intestinalis and portomesenteric venous gas in intestinal ischemia: correlation of CT findings with severity of ischemia and clinical outcome.  AJR Am J Roentgenol 2001;177 (6) 1319- 1323PubMedGoogle ScholarCrossref
14.
Arnon  RGFishbein  JF Portal venous gas in the pediatric age group: review of the literature and report of twelve new cases.  J Pediatr 1971;79 (2) 255- 259PubMedGoogle ScholarCrossref
15.
See  CElliott  D Images in clinical medicine: pneumatosis intestinalis and portal venous gas.  N Engl J Med 2004;350 (4) e3PubMedGoogle ScholarCrossref
16.
Berne  TVMeyers  HIDonovan  AJ Gas in the portal vein of adults with necrotizing enteropathy.  Am J Surg 1970;120 (2) 203- 209PubMedGoogle ScholarCrossref
17.
Sibbald  WJSweeney  JPInwood  MJ Portal venous gas (PVG) as an indication for heparinization.  Am J Surg 1972;124 (5) 690- 693PubMedGoogle ScholarCrossref
18.
Kriegshauser  JSReading  CCKing  BFWelch  TJ Combined systemic and portal venous gas: sonographic and CT detection in two cases.  AJR Am J Roentgenol 1990;154 (6) 1219- 1221PubMedGoogle ScholarCrossref
19.
Katz  BHSchwartz  SSVender  RJ Portal venous gas following a barium enema in a patient with Crohn's colitis: a benign finding.  Dis Colon Rectum 1986;29 (1) 49- 51PubMedGoogle ScholarCrossref
20.
Birnberg  FAGore  RMShragg  BMargulis  AR Hepatic portal venous gas: a benign finding in a patient with ulcerative colitis.  J Clin Gastroenterol 1983;5 (1) 89- 91PubMedGoogle ScholarCrossref
21.
Haber  I Hepatic portal vein gas following colonoscopy in ulcerative colitis: report of a case.  Acta Gastroenterol Belg 1983;46 (1-2) 14- 17PubMedGoogle Scholar
22.
Wiesner  WMortele  KJGlickman  JNJi  HRos  PR Portal-venous gas unrelated to mesenteric ischemia.  Eur Radiol 2002;12 (6) 1432- 1437PubMedGoogle ScholarCrossref
23.
Celoria  GCoe  NP Does the presence of hepatic portal venous gas mandate an operation? A reassessment.  South Med J 1990;83 (5) 592- 594PubMedGoogle ScholarCrossref
24.
Foster  SCSchneider  BSeaman  WB Gas-containing pyogenic intrahepatic abscesses.  Radiology 1970;94 (3) 613- 618PubMedGoogle ScholarCrossref
25.
Yoshida  MMitsuo  MKutsumi  H  et al.  A successfully treated case of multiple liver abscesses accompanied by portal venous gas.  Am J Gastroenterol 1996;91 (11) 2423- 2425PubMedGoogle Scholar
26.
Zielke  AHasse  CNies  CRothmund  M Hepatic-portal venous gas in acute colonic diverticulitis.  Surg Endosc 1998;12 (3) 278- 280PubMedGoogle ScholarCrossref
27.
Tedesco  FJStanley  RJ Hepatic portal vein gas without bowel infarction or necrosis.  Gastroenterology 1975;69 (1) 240- 243PubMedGoogle Scholar
28.
Nakao  AIwagaki  HIsozaki  H  et al.  Portal venous gas associated with splenic abscess secondary to colon cancer.  Anticancer Res 1999;19 (6C) 5641- 5644PubMedGoogle Scholar
29.
Quirke  TE Hepatic-portal venous gas associated with ileus.  Am Surg 1995;61 (12) 1084- 1086PubMedGoogle Scholar
30.
Lee  CSKuo  YCPeng  SM  et al.  Sonographic detection of hepatic portal venous gas associated with suppurative cholangitis.  J Clin Ultrasound 1993;21 (5) 331- 334PubMedGoogle ScholarCrossref
31.
Sonnenshein  MACone  LAAlexander  RM Diverticulitis with colovenous fistula and portal venous gas: report of two cases.  J Clin Gastroenterol 1986;8 (2) 195- 198PubMedGoogle ScholarCrossref
32.
Mallens  WMSchepers-Bok  RNicolai  JJJacobs  FAHeyerman  HG Portal and systemic venous gas in a patient with cystic fibrosis: CT findings.  AJR Am J Roentgenol 1995;165 (2) 338- 339PubMedGoogle ScholarCrossref
33.
Chen  KWShin  JSChi  CHCheng  L Seizure: a rare and transient cause of portal venous gas.  Am J Gastroenterol 1997;92 (2) 351- 352PubMedGoogle Scholar
34.
Saksena  MHarisinghani  MGWittenberg  JMueller  PR Case report: hepatic portal venous gas. Transient radiographic finding associated with colchicine toxicity.  Br J Radiol 2003;76 (911) 835- 837PubMedGoogle ScholarCrossref
35.
Delamarre  JCapron  JPDupas  JLDeschepper  BJouet-Gondry  CRudelli  A Spontaneous portal venous gas in a patient with Crohn's ileocolitis.  Gastrointest Radiol 1991;16 (1) 38- 40PubMedGoogle ScholarCrossref
36.
Niki  MShimizu  IHorie  T  et al.  Hepatic portal venous gas disappearing within 24 hours.  Intern Med 2002;41 (11) 950- 952PubMedGoogle ScholarCrossref
37.
Mognol  PChosidow  DMarmuse  JP Hepatic portal gas due to gastro-jejunal anastomotic leak after laparoscopic gastric bypass.  Obes Surg 2005;15 (2) 278- 281PubMedGoogle ScholarCrossref
38.
Herman  JBLevine  MSLong  WB Portal venous gas as a complication of ERCP and endoscopic sphincterotomy.  Am J Gastroenterol 1995;90 (5) 828- 829PubMedGoogle Scholar
39.
Barthet  MMembrini  PBernard  JPSahel  J Hepatic portal venous gas after endoscopic biliary sphincterotomy.  Gastrointest Endosc 1994;40 (2, pt 1) 261- 263PubMedGoogle ScholarCrossref
40.
Blind  PJOberg  LHedberg  B Hepatic portal vein gas following endoscopic retrograde cholangiography with sphincterotomy: case report.  Eur J Surg 1991;157 (4) 299- 300PubMedGoogle Scholar
41.
Simmons  TC Hepatic portal venous gas due to endoscopic sphincterotomy.  Am J Gastroenterol 1988;83 (3) 326- 328PubMedGoogle Scholar
42.
Nguyen  HNPurucker  ERiehl  JMatern  S Hepatic portal venous gas following emergency endoscopic sclerotherapy of gastric varices.  Hepatogastroenterology 1998;45 (23) 1767- 1769PubMedGoogle Scholar
43.
Pfaffenbach  BWegener  MBohmeke  T Hepatic portal venous gas after transgastric EUS-guided fine-needle aspiration of an accessory spleen.  Gastrointest Endosc 1996;43 (5) 515- 518PubMedGoogle ScholarCrossref
44.
Benson  MD Adult survival with intrahepatic portal venous gas secondary to acute gastric dilatation, with a review of portal venous gas.  Clin Radiol 1985;36 (4) 441- 443PubMedGoogle ScholarCrossref
45.
Hughes  DGBarker  CS Adult survival with portal venous gas secondary to acute gastric dilation.  Clin Radiol 1986;37 (6) 603PubMedGoogle ScholarCrossref
46.
Radin  DRRosen  RSHalls  JM Acute gastric dilatation: a rare cause of portal venous gas.  AJR Am J Roentgenol 1987;148 (2) 279- 280PubMedGoogle ScholarCrossref
47.
Chezmar  JLNelson  RCBernardino  ME Portal venous gas after hepatic transplantation: sonographic detection and clinical significance.  AJR Am J Roentgenol 1989;153 (6) 1203- 1205PubMedGoogle ScholarCrossref
48.
Oei  TvanSonnenberg  EShankar  SMorrison  PRTuncali  KSilverman  SG Radiofrequency ablation of liver tumors: a new cause of benign portal venous gas.  Radiology 2005;237 (2) 709- 717PubMedGoogle ScholarCrossref
49.
Schmidt  AG Portal vein gas due to administration of fluids via the umbilical vein.  Radiology 1967;88 (2) 293- 294PubMedGoogle ScholarCrossref
50.
Bull  MJKaye  B Portal vein gas following double-contrast barium enema.  Br J Radiol 1985;58 (695) 1129- 1130PubMedGoogle ScholarCrossref
51.
Kees  CJHester  CL  Jr Portal vein gas following barium enema examination.  Radiology 1972;102 (3) 525- 526PubMedGoogle ScholarCrossref
52.
Stein  MGCrues  JV  IIIHamlin  JA Portal venous air associated with barium enema.  AJR Am J Roentgenol 1983;140 (6) 1171- 1172PubMedGoogle ScholarCrossref
53.
Shaw  ACooperman  AFusco  J Gas embolism produced by hydrogen peroxide.  N Engl J Med 1967;277 (5) 238- 241PubMedGoogle ScholarCrossref
54.
Griffiths  DMGough  MH Gas in the hepatic portal veins.  Br J Surg 1986;73 (3) 172- 176PubMedGoogle ScholarCrossref
55.
Paran  HEpstein  TGutman  MShapiro Feinberg  MZissin  R Mesenteric and portal vein gas: computerized tomography findings and clinical significance.  Dig Surg 2003;20 (2) 127- 132PubMedGoogle ScholarCrossref
56.
Peloponissios  NHalkic  NPugnale  M  et al.  Hepatic portal gas in adults: review of the literature and presentation of a consecutive series of 11 cases.  Arch Surg 2003;138 (12) 1367- 1370PubMedGoogle ScholarCrossref
57.
Kennedy  JHolt  CLRicketts  RR The significance of portal vein gas in necrotizing enterocolitis.  Am Surg 1987;53 (4) 231- 234PubMedGoogle Scholar
58.
Marston  A Causes of death in mesenteric arterial occlusion, I: local and general effects of devascularization of the bowel.  Ann Surg 1963;158952- 959PubMedGoogle ScholarCrossref
59.
Lai  CFChang  WTLiang  PCLien  WCWang  HPChen  WJ Pneumatosis intestinalis and hepatic portal venous gas after CPR.  Am J Emerg Med 2005;23 (2) 177- 181PubMedGoogle ScholarCrossref
60.
Shiotani  SKohno  MOhashi  NYamazaki  KNakayama  HWatanabe  K Postmortem computed tomographic (PMCT) demonstration of the relation between gastrointestinal (GI) distension and hepatic portal venous gas (HPVG).  Radiat Med 2004;22 (1) 25- 29PubMedGoogle Scholar
61.
Barsan  WGLevy  RCWeir  H Lidocaine levels during CPR: differences after peripheral venous, central venous, and intracardiac injections.  Ann Emerg Med 1981;10 (2) 73- 78PubMedGoogle ScholarCrossref
62.
Earls  JPDachman  AHColon  EGarrett  MGMolloy  M Prevalence and duration of postoperative pneumoperitoneum: sensitivity of CT vs left lateral decubitus radiography.  AJR Am J Roentgenol 1993;161 (4) 781- 785PubMedGoogle ScholarCrossref
63.
Schulze  CGBlum  UHaag  K Hepatic portal venous gas: imaging modalities and clinical significance.  Acta Radiol 1995;36 (4) 377- 380PubMedGoogle Scholar
64.
Brenner  DJHall  EJ Computed tomography—an increasing source of radiation exposure.  N Engl J Med 2007;357 (22) 2277- 2284PubMedGoogle ScholarCrossref
65.
Jones  B Massive gas embolism in E. coli septicemia.  Gastrointest Radiol 1981;6 (2) 161- 163PubMedGoogle ScholarCrossref
66.
Chau  TNLoke  TKLeung  VKLaw  STLai  MHHo  YW Hepatic portal venous gas complicating septic thrombophlebitis of the superior mesenteric vein.  Hong Kong Med J 2007;13 (1) 69- 72PubMedGoogle Scholar
67.
Yale  CEBalish  EWu  JP The bacterial etiology of pneumatosis cystoides intestinalis.  Arch Surg 1974;109 (1) 89- 94PubMedGoogle ScholarCrossref
68.
Christensen  MALu  CH Gas in the portal vein after air-contrast barium enema in a patient with inflammatory colitis.  South Med J 1982;75 (10) 1291- 1292PubMedGoogle ScholarCrossref
69.
Sadhu  VKBrennan  REMadan  V Portal vein gas following air-contrast barium enema in granulomatous colitis: report of a case.  Gastrointest Radiol 1979;4 (2) 163- 164PubMedGoogle ScholarCrossref
70.
Huycke  AMoeller  DD Hepatic portal venous gas after colonoscopy in granulomatous colitis.  Am J Gastroenterol 1985;80 (8) 637- 638PubMedGoogle Scholar
71.
Bilger  M Pneumatosis cystoides intestinalis in children; report of a case complicated with fatal pneumoperitoneum.  J Pediatr 1956;49 (4) 445- 449PubMedGoogle ScholarCrossref
72.
Karaosmanoğlu  DOktar  SOArac  MErbas  G Case report: portal and systemic venous gas in a patient after lumbar puncture.  Br J Radiol 2005;78 (932) 767- 769PubMedGoogle ScholarCrossref
73.
Negro  UVerdecchia  MPaci  E  et al.  Hepatic portal venous gas in a patient with enterovascular fistula.  Abdom Imaging 2006;31 (6) 706- 709PubMedGoogle ScholarCrossref
74.
Oktar  SOKaraosmanoglu  DYucel  C  et al.  Portomesenteric venous gas: imaging findings with an emphasis on sonography.  J Ultrasound Med 2006;25 (8) 1051- 1058PubMedGoogle Scholar
75.
Ruíz  DSde Perrot  TMajno  PE A case of portal venous gas secondary to acute appendicitis detected on gray scale sonography but not computed tomography.  J Ultrasound Med 2005;24 (3) 383- 386PubMedGoogle Scholar
76.
Patriquin  LKassarjian  ABarish  M  et al.  Postmortem whole-body magnetic resonance imaging as an adjunct to autopsy: preliminary clinical experience.  J Magn Reson Imaging 2001;13 (2) 277- 287PubMedGoogle ScholarCrossref
77.
Huurman  VAVisser  LGSteens  SCTerpstra  OTSchaapherder  AF Persistent portal venous gas.  J Gastrointest Surg 2006;10 (5) 783- 785PubMedGoogle ScholarCrossref
×