[Skip to Navigation]
Sign In
1.
Murry  CEJennings  RBReimer  KA Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium.  Circulation 1986;741124- 1136PubMedGoogle ScholarCrossref
2.
Cohen  MVBaines  CPDowney  JM Ischemic preconditioning: from adenosine receptor of KATP channel.  Annu Rev Physiol 2000;6279- 109PubMedGoogle ScholarCrossref
3.
Deutsch  EBerger  MKussmaul  WGHirshfeld  JW  JrHerrmann  HCLaskey  WK Adaptation to ischemia during percutaneous transluminal coronary angioplasty: clinical, hemodynamic, and metabolic features.  Circulation 1990;822044- 2051PubMedGoogle ScholarCrossref
4.
Yellon  DMAlkhulaifi  AMPugsley  WB Preconditioning the human myocardium.  Lancet 1993;342276- 277PubMedGoogle ScholarCrossref
5.
Jenkins  DPPugsley  WBAlkhulaifi  AMKemp  MHooper  JYellon  DM Ischaemic preconditioning reduces troponin T release in patients undergoing coronary artery bypass surgery.  Heart 1997;77314- 318PubMedGoogle Scholar
6.
Ottani  FGalvani  MFerrini  D  et al.  Prodromal angina limits infarct size: a role for ischemic preconditioning.  Circulation 1995;91291- 297PubMedGoogle ScholarCrossref
7.
Kloner  RAShook  TPrzyklenk  K  et al.  Previous angina alters in-hospital outcome in TIMI 4: a clinical correlate to preconditioning?  Circulation 1995;9137- 45PubMedGoogle ScholarCrossref
8.
Kloner  RAShook  TAntman  EM  et al.  Prospective temporal analysis of the onset of preinfarction angina versus outcome: an ancillary study in TIMI-9B.  Circulation 1998;971042- 1045PubMedGoogle ScholarCrossref
9.
Leesar  MAStoddard  MFManchikalapudi  SBolli  R Bradykinin-induced preconditioning in patients undergoing coronary angioplasty.  J Am Coll Cardiol 1999;34639- 650PubMedGoogle ScholarCrossref
10.
Kopecky  SLAviles  RJBell  MR  et al.  A randomized, double-blinded, placebo-controlled, dose-ranging study measuring the effect of an adenosine agonist on infarct size reduction in patients undergoing primary percutaneous transluminal coronary angioplasty: the ADMIRE (AmP579 Delivery for Myocardial Infarction REduction) study.  Am Heart J 2003;146146- 152PubMedGoogle ScholarCrossref
11.
Imagawa  JBaxter  GFYellon  DM Myocardial protection afforded by nicorandil and ischaemic preconditioning in a rabbit infarct model in vivo.  J Cardiovasc Pharmacol 1998;3174- 79PubMedGoogle ScholarCrossref
12.
IONA Study Group, Effect of nicorandil on coronary events in patients with stable angina: the Impact Of Nicorandil in Angina (IONA) randomised trial.  Lancet 2002;3591269- 1275PubMedGoogle ScholarCrossref
13.
Loubani  MGalinanes  M Long-term administration of nicorandil abolishes ischemic and pharmacologic preconditioning of the human myocardium: role of mitochondrial adenosine triphosphate-dependent potassium channels.  J Thorac Cardiovasc Surg 2002;124750- 757PubMedGoogle ScholarCrossref
14.
Ishihara  MInoue  IKawagoe  T  et al.  Diabetes mellitus prevents ischemic preconditioning in patients with a first acute anterior wall myocardial infarction.  J Am Coll Cardiol 2001;381007- 1011PubMedGoogle ScholarCrossref
15.
Forlani  STomai  FDe Paulis  R  et al.  Preoperative shift from glibenclamide to insulin is cardioprotective in diabetic patients undergoing coronary artery bypass surgery.  J Cardiovasc Surg (Torino) 2004;45117- 122PubMedGoogle Scholar
16.
Kloner  RAPrzyklenk  KShook  TCannon  CP Protection conferred by preinfarct angina is manifest in the aged heart: evidence from the TIMI 4 trial.  J Thromb Thrombolysis 1998;689- 92PubMedGoogle ScholarCrossref
17.
Wu  ZKPehkonen  ELaurikka  J  et al.  The protective effects of preconditioning decline in aged patients undergoing coronary artery bypass grafting.  J Thorac Cardiovasc Surg 2001;122972- 978PubMedGoogle ScholarCrossref
18.
Bartling  BFriedrich  ISilber  RESimm  A Ischemic preconditioning is not cardioprotective in senescent human myocardium.  Ann Thorac Surg 2003;76105- 111PubMedGoogle ScholarCrossref
19.
Loubani  MGhosh  SGalinanes  M The aging human myocardium: tolerance to ischemia and responsiveness to ischemic preconditioning.  J Thorac Cardiovasc Surg 2003;126143- 147PubMedGoogle ScholarCrossref
20.
Tomoda  HAoki  N Coronary blood flow in evolving myocardial infarction preceded by preinfarction angina: a critical reevaluation of preconditioning effects in clinical cases.  Angiology 2004;559- 15PubMedGoogle ScholarCrossref
21.
Hardy  KJMcClure  DNSubwongcharoen  S Ischaemic preconditioning of the liver: a preliminary study.  Aust N Z J Surg 1996;66707- 710PubMedGoogle ScholarCrossref
22.
Yoshizumi  TYanaga  KSoejima  YMaeda  TUchiyama  HSugimachi  K Amelioration of liver injury by ischaemic preconditioning.  Br J Surg 1998;851636- 1640PubMedGoogle ScholarCrossref
23.
Peralta  CFernandez  LPanes  J  et al.  Preconditioning protects against systemic disorders associated with hepatic ischemia-reperfusion through blockade of tumor necrosis factor-induced P-selectin up-regulation in the rat.  Hepatology 2001;33100- 113PubMedGoogle ScholarCrossref
24.
Peralta  CPerales  JCBartrons  R  et al.  The combination of ischemic preconditioning and liver Bcl-2 overexpression is a suitable strategy to prevent liver and lung damage after hepatic ischemia-reperfusion.  Am J Pathol 2002;1602111- 2122PubMedGoogle ScholarCrossref
25.
Clavien  PAYadav  SSindram  DBentley  RC Protective effects of ischemic preconditioning for liver resection performed under inflow occlusion in humans.  Ann Surg 2000;232155- 162PubMedGoogle ScholarCrossref
26.
Clavien  PASelzner  MRudiger  HA  et al.  A prospective randomized study in 100 consecutive patients undergoing major liver resection with versus without ischemic preconditioning.  Ann Surg 2003;238843- 850PubMedGoogle ScholarCrossref
27.
Nuzzo  GGiuliante  FVellone  M  et al.  Pedicle clamping with ischemic preconditioning in liver resection.  Liver Transpl 2004;10 ((suppl 1)) S53- S57PubMedGoogle ScholarCrossref
28.
Rudiger  HAKang  KJSindram  DRiehle  HMClavien  PA Comparison of ischemic preconditioning and intermittent and continuous inflow occlusion in the murine liver.  Ann Surg 2002;235400- 407PubMedGoogle ScholarCrossref
29.
Fernandez  LHeredia  NGrande  L  et al.  Preconditioning protects liver and lung damage in rat liver transplantation: role of xanthine/xanthine oxidase.  Hepatology 2002;36562- 572PubMedGoogle ScholarCrossref
30.
Arai  MThurman  RGLemasters  JJ Ischemic preconditioning of rat livers against cold storage-reperfusion injury: role of nonparenchymal cells and the phenomenon of heterologous preconditioning.  Liver Transpl 2001;7292- 299PubMedGoogle ScholarCrossref
31.
Jiang  YGu  XPQiu  YD  et al.  Ischemic preconditioning decreases C-X-C chemokine expression and neutrophil accumulation early after liver transplantation in rats.  World J Gastroenterol 2003;92025- 2029PubMedGoogle Scholar
32.
Totsuka  EFung  JJUrakami  A  et al.  Influence of donor cardiopulmonary arrest in human liver transplantation: possible role of ischemic preconditioning.  Hepatology 2000;31577- 580PubMedGoogle ScholarCrossref
33.
Wilson  DJFisher  ADas  K  et al.  Donors with cardiac arrest: improved organ recovery but no preconditioning benefit in liver allografts.  Transplantation 2003;751683- 1687PubMedGoogle ScholarCrossref
34.
Li  GChen  SLou  WLu  E Protective effects of ischemic preconditioning on donor lung in canine lung transplantation.  Chest 1998;1131356- 1359PubMedGoogle ScholarCrossref
35.
Soncul  HOz  EKalaycioglu  S Role of ischemic preconditioning on ischemia-reperfusion injury of the lung.  Chest 1999;1151672- 1677PubMedGoogle ScholarCrossref
36.
Gasparri  RIJannis  NCFlameng  WJLerut  TEVan Raemdonck  DE Ischemic preconditioning enhances donor lung preservation in the rabbit.  Eur J Cardiothorac Surg 1999;16639- 646PubMedGoogle ScholarCrossref
37.
Du  ZYHicks  MWinlaw  DSpratt  PMacdonald  P Ischemic preconditioning enhances donor lung preservation in the rat.  J Heart Lung Transplant 1996;151258- 1267PubMedGoogle Scholar
38.
Featherstone  RLChambers  DJKelly  FJ Ischemic preconditioning enhances recovery of isolated rat lungs after hypothermic preservation.  Ann Thorac Surg 2000;69237- 242PubMedGoogle ScholarCrossref
39.
Friedrich  ISpillner  JLu  EX  et al.  Ischemic pre-conditioning of 5 minutes but not of 10 minutes improves lung function after warm ischemia in a canine model.  J Heart Lung Transplant 2001;20985- 995PubMedGoogle ScholarCrossref
40.
Chen  SLi  GLong  L Clinical research of ischemic preconditioning on lung protection.  Hunan Yi Ke Da Xue Xue Bao 1999;24357- 359PubMedGoogle Scholar
41.
Zhang  CFChen  SX Clinical study of ischemic preconditioning on isolated lung perfusion with chemotherapeutic agents in the treatment of unresectable lung cancer.  Hunan Yi Ke Da Xue Xue Bao 2001;2651- 54PubMedGoogle Scholar
42.
Perez-Pinzon  MAXu  GPDietrich  WDRosenthal  MSick  TJ Rapid preconditioning protects rats against ischemic neuronal damage after 3 but not 7 days of reperfusion following global cerebral ischemia.  J Cereb Blood Flow Metab 1997;17175- 182PubMedGoogle ScholarCrossref
43.
Kitagawa  KMatsumoto  MTagaya  M  et al.  “Ischemic tolerance” phenomenon found in the brain.  Brain Res 1990;52821- 24PubMedGoogle ScholarCrossref
44.
Bajgar  RSeetharaman  SKowaltowski  AJGarlid  KDPaucek  P Identification and properties of a novel intracellular (mitochondrial) ATP-sensitive potassium channel in brain.  J Biol Chem 2001;27633369- 33374PubMedGoogle ScholarCrossref
45.
Alkayed  NJGoyagi  TJoh  HD  et al.  Neuroprotection and P450 2C11 upregulation after experimental transient ischemic attack.  Stroke 2002;331677- 1684PubMedGoogle ScholarCrossref
46.
Stenzel-Poore  MPStevens  SLXiong  Z  et al.  Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states.  Lancet 2003;3621028- 1037PubMedGoogle ScholarCrossref
47.
Weih  MKallenberg  KBergk  A  et al.  Attenuated stroke severity after prodromal TIA: a role for ischemic tolerance in the brain?  Stroke 1999;301851- 1854PubMedGoogle ScholarCrossref
48.
Moncayo  Jde Freitas  GRBogousslavsky  JAltieri  Mvan Melle  G Do transient ischemic attacks have a neuroprotective effect?  Neurology 2000;542089- 2094PubMedGoogle ScholarCrossref
49.
Sitzer  MFoerch  CNeumann-Haefelin  T  et al.  Transient ischaemic attack preceding anterior circulation infarction is independently associated with favourable outcome.  J Neurol Neurosurg Psychiatry 2004;75659- 660PubMedGoogle ScholarCrossref
50.
Wegener  SGottschalk  BJovanovic  V  et al.  Transient ischemic attacks before ischemic stroke: preconditioning the human brain? A multicenter magnetic resonance imaging study.  Stroke 2004;35616- 621PubMedGoogle ScholarCrossref
51.
Mounsey  RAPang  CYForrest  C Preconditioning: a new technique for improved muscle flap survival.  Otolaryngol Head Neck Surg 1992;107549- 552PubMedGoogle Scholar
52.
Carroll  CMCarroll  SMOvergoor  MLTobin  GBarker  JH Acute ischemic preconditioning of skeletal muscle prior to flap elevation augments muscle-flap survival.  Plast Reconstr Surg 1997;10058- 65PubMedGoogle ScholarCrossref
53.
Pang  CYYang  RZZhong  AXu  NBoyd  BForrest  CR Acute ischaemic preconditioning protects against skeletal muscle infarction in the pig.  Cardiovasc Res 1995;29782- 788PubMedGoogle ScholarCrossref
54.
Papanastasiou  SEstdale  SEHomer-Vanniasinkam  SMathie  RT Protective effect of preconditioning and adenosine pretreatment in experimental skeletal muscle reperfusion injury.  Br J Surg 1999;86916- 922PubMedGoogle ScholarCrossref
55.
Bushell  AJKlenerman  LTaylor  S  et al.  Ischaemic preconditioning of skeletal muscle: protection against the structural changes induced by ischaemia/reperfusion injury.  J Bone Joint Surg Br 2002;841184- 1188PubMedGoogle ScholarCrossref
56.
Zahir  KSSyed  SAZink  JRRestifo  RJThomson  JG Ischemic preconditioning improves the survival of skin and myocutaneous flaps in a rat model.  Plast Reconstr Surg 1998;102140- 150PubMedGoogle ScholarCrossref
57.
Gurke  LMarx  ASutter  PM  et al.  Ischemic preconditioning improves post-ischemic skeletal muscle function.  Am Surg 1996;62391- 394PubMedGoogle Scholar
58.
Schroeder  CA  JrLee  HTShah  PMBabu  SCThompson  CIBelloni  FL Preconditioning with ischemia or adenosine protects skeletal muscle from ischemic tissue reperfusion injury.  J Surg Res 1996;6329- 34PubMedGoogle ScholarCrossref
59.
Mattei  ASutter  PMMarx  AStierli  PHeberer  MGurke  L Preconditioning with short cycles improves ischemic tolerance in rat fast- and slow-twitch skeletal muscle.  Eur Surg Res 2000;32297- 304PubMedGoogle ScholarCrossref
60.
Kharbanda  RKPeters  MWalton  B  et al.  Ischemic preconditioning prevents endothelial injury and systemic neutrophil activation during ischemia-reperfusion in humans in vivo.  Circulation 2001;1031624- 1630PubMedGoogle ScholarCrossref
61.
Kharbanda  RKMortensen  UMWhite  PA  et al.  Transient limb ischemia induces remote ischemic preconditioning in vivo.  Circulation 2002;1062881- 2883PubMedGoogle ScholarCrossref
62.
Zvara  DAColonna  DMDeal  DDVernon  JCGowda  MLundell  JC Ischemic preconditioning reduces neurologic injury in a rat model of spinal cord ischemia.  Ann Thorac Surg 1999;68874- 880PubMedGoogle ScholarCrossref
63.
Fan  TWang  CCWang  FM  et al.  Experimental study of the protection of ischemic preconditioning to spinal cord ischemia.  Surg Neurol 1999;52299- 305PubMedGoogle ScholarCrossref
64.
Kuntscher  MVKastell  TSauerbier  MNobiling  RGebhard  MMGermann  G Acute remote ischemic preconditioning on a rat cremasteric muscle flap model.  Microsurgery 2002;22221- 226PubMedGoogle ScholarCrossref
65.
Addison  PDNeligan  PCAshrafpour  H  et al.  Noninvasive remote ischemic preconditioning for global protection of skeletal muscle against infarction.  Am J Physiol Heart Circ Physiol 2003;285H1435- H1443PubMedGoogle Scholar
66.
Ogawa  TMimura  YHiki  NKanauchi  HKaminishi  M Ischaemic preconditioning ameliorates functional disturbance and impaired renal perfusion in rat ischaemia-reperfused kidneys.  Clin Exp Pharmacol Physiol 2000;27997- 1001PubMedGoogle ScholarCrossref
67.
Lee  HTEmala  CW Protective effects of renal ischemic preconditioning and adenosine pretreatment: role of A(1) and A(3) receptors.  Am J Physiol Renal Physiol 2000;278F380- F387PubMedGoogle Scholar
68.
Jefayri  MKGrace  PAMathie  RT Attenuation of reperfusion injury by renal ischaemic preconditioning: the role of nitric oxide.  BJU Int 2000;851007- 1013PubMedGoogle ScholarCrossref
69.
Toosy  NMcMorris  ELGrace  PAMathie  RT Ischaemic preconditioning protects the rat kidney from reperfusion injury.  BJU Int 1999;84489- 494PubMedGoogle ScholarCrossref
70.
Park  KMByun  JYKramers  CKim  JIHuang  PLBonventre  JV Inducible nitric-oxide synthase is an important contributor to prolonged protective effects of ischemic preconditioning in the mouse kidney.  J Biol Chem 2003;27827256- 27266PubMedGoogle ScholarCrossref
71.
Behrends  MWalz  MKKribben  A  et al.  No protection of the porcine kidney by ischaemic preconditioning.  Exp Physiol 2000;85819- 827PubMedGoogle ScholarCrossref
72.
Kosieradzki  MAmetani  MSouthard  JHMangino  MJ Is ischemic preconditioning of the kidney clinically relevant?  Surgery 2003;13381- 90PubMedGoogle ScholarCrossref
73.
Turman  MAKahn  DARosenfeld  SLApple  CABates  CM Characterization of human proximal tubular cells after hypoxic preconditioning: constitutive and hypoxia-induced expression of heat shock proteins HSP70 (A, B, and C), HSC70, and HSP90.  Biochem Mol Med 1997;6049- 58PubMedGoogle ScholarCrossref
74.
Lee  HTEmala  CW Preconditioning and adenosine protect human proximal tubule cells in an in vitro model of ischemic injury.  J Am Soc Nephrol 2002;132753- 2761PubMedGoogle ScholarCrossref
75.
Barratt  JParajasingam  RSayers  RDFeehally  J Outcome of acute renal failure following surgical repair of ruptured abdominal aortic aneurysms.  Eur J Vasc Endovasc Surg 2000;20163- 168PubMedGoogle ScholarCrossref
76.
Sola  ADe Oca  JGonzalez  R  et al.  Protective effect of ischemic preconditioning on cold preservation and reperfusion injury associated with rat intestinal transplantation.  Ann Surg 2001;23498- 106PubMedGoogle ScholarCrossref
77.
Vlasov  TDSmirnov  DANutfullina  GM Preconditioning of the small intestine to ischemia in rats.  Neurosci Behav Physiol 2002;32449- 453PubMedGoogle ScholarCrossref
78.
Pajdo  RBrzozowski  TKonturek  PC  et al.  Ischemic preconditioning, the most effective gastroprotective intervention: involvement of prostaglandins, nitric oxide, adenosine and sensory nerves.  Eur J Pharmacol 2001;427263- 276PubMedGoogle ScholarCrossref
79.
Zhang  YWu  YXHao  YBDun  YYang  SP Role of endogenous opioid peptides in protection of ischemic preconditioning in rat small intestine.  Life Sci 2001;681013- 1019PubMedGoogle ScholarCrossref
80.
Ferencz  ASzanto  ZBorsiczky  B  et al.  The effects of preconditioning on the oxidative stress in small-bowel autotransplantation.  Surgery 2002;132877- 884PubMedGoogle ScholarCrossref
81.
Unal  SDemirkan  FArslan  E  et al.  Comparison of ischemic and chemical preconditioning in jejunal flaps in the rat.  Plast Reconstr Surg 2003;1121024- 1031PubMedGoogle ScholarCrossref
Review
April 1, 2005

Surgical Implications of Ischemic Preconditioning

Author Affiliations

Author Affiliations: Vascular Surgical Unit, The General Infirmary at Leeds, England.

Arch Surg. 2005;140(4):405-409. doi:10.1001/archsurg.140.4.405
Abstract

Background  Ischemic preconditioning (IP) has emerged as a powerful experimental method of ameliorating ischemic injury in a variety of organs. This systematic review examines the surgical implications of this phenomenon.

Data Source  A MEDLINE search was conducted to identify laboratory and clinical studies investigating IP-induced protection in a variety of organ systems. Particular emphasis was placed on uncovering evidence for the use of IP in the surgical setting.

Data Synthesis  Human clinical trials using IP have been successfully carried out in the fields of cardiac, hepatic, and pulmonary surgery. Epidemiologic data exist to support the existence of IP-induced neuroprotection in humans. Human skeletal muscle has been preconditioned experimentally, as have human proximal tubule (renal) cells. At present, there is no evidence for IP occurring in the human intestine, although animal studies attest to the possibility. Ischemic preconditioning appears to be effective even when applied to a site remote to the organ exposed to ischemia. However, these favorable effects are less evident in diabetic and elderly patients.

Conclusion  Ischemic preconditioning is safe for use in elective cardiac, hepatic, and pulmonary surgery. More studies with greater patient numbers need to be carried out in these areas to demonstrate the efficacy of IP in providing clinical benefit in terms of reducing morbidity and mortality. Although laboratory and experimental evidence is favorable, clinical studies using IP in orthopedic, vascular, reconstructive, transplantation, and gastrointestinal surgery are lacking.

In 1986, Murry et al1 reported that brief periods of myocardial ischemia could confirm resistance to subsequent ischemia in the same tissue bed. The volume of an experimentally induced myocardial infarct was 70% smaller in preconditioned hearts compared with controls. This canine experiment was quickly reproduced in other animal models and different organ systems, giving rise to the concept of ischemic preconditioning (IP).2 Despite the abundance of animal and experimental data available, IP has been slow to enter the clinical arena. This systematic review examines the evidence for and possible uses of IP in humans with reference to each major organ. A MEDLINE search was conducted using the keywords ischemic preconditioning, myocardium, liver, brain, lung, intestine, kidney, and skeletal muscle. Additional articles were obtained from reference lists of recent topical reviews. In cases where human studies are lacking, key animal and experimental data are cited to identify possible uses for IP in the surgical setting.

Preconditioning the heart

The first clinical study of IP reported the effects of 2 sequential 90-second coronary occlusions in 19 patients undergoing elective angioplasty of the left anterior descending coronary artery.3 The second episode of ischemia caused less chest pain and ST segment elevation in all patients, and in a further analysis of 7 of those patients, myocardial lactate production was also diminished. This study was soon followed by evidence for the protective effects of IP during surgery. Yellon et al4 showed that IP had positive effects on reducing ATP utilization by cardiomyocytes during cardiopulmonary bypass. Measuring serum troponin T levels 72 hours postoperatively in a subsequent randomized trial of 33 patients undergoing coronary artery surgery, revealed that exposure to two 3-minute periods of myocardial ischemia prior to revascularization resulted in significantly less myocardial injury.5

The clinical correlate of myocardial IP—prodromal angina—appears to have a protective effect on patients who progress to acute myocardial infarction,6,7 although on closer scrutiny, the benefits were only manifest if angina occurred within 24 hours of infarction.8 Patients with angina within 24 hours of myocardial infarction had smaller infarct size, improved left ventricular function, and enhanced survival after reperfusion therapy. Preconditioning mimetics targeted at adenosine and bradykinin receptors have been used in coronary angioplasty clinical trials with encouraging results.9,10 Nicorandil, a new antianginal drug that has nitratelike vasodilator properties in addition to its effects on mitochondrial KATP channels, has shown great promise.11,12 However, longer-term results of these interventions are necessary to fully appreciate their role in management of ischemic disease.13 On the other hand, IP has therapeutic limitations with diabetic14,15 and elderly patients.16-19 Furthermore, the salutary effects of angina within 24 hours of myocardial infarction are less evident in patients receiving early (<6 hours) percutaneous coronary intervention.20

Liver

The clinical importance of IP to liver surgery is 2-fold: resectional surgery, particularly cancer related, and transplantation. The topic of IP-mediated protection from hepatic ischemia/reperfusion (I/R) injury has been well studied in rodent and porcine models.21,22 Local and systemic I/R injuries were diminished after hepatic preconditioning23 and this protection could be enhanced by manipulation of apoptotic pathways.24 Translational studies by Clavien et al25 have given great momentum to bringing hepatic IP into the clinical arena. In 24 patients undergoing partial hepatectomy under inflow occlusion, those receiving IP had a dramatic reduction in apoptotic cells in the ischemic liver bed. The IP-treated patients had half the levels of serum liver enzymes postresection. Similar results were achieved in a subsequent prospective randomized trial enrolling 100 patients.26 With the large sample size involved, Clavien et al were able to show that IP was particularly beneficial in younger patients (age <60 years), steatotic livers, smaller volume of resection (<50%), and longer duration of inflow occlusion (>40 minutes). Unfortunately, elderly patients did not receive the same degree of protection. A similar randomized study was carried out by Nuzzo et al27 on 42 patients undergoing hepatectomy. Hepatic transaminase levels were elevated postoperatively in both groups depending on the duration of operative ischemia (9 patients were subject to >60 minutes of continuous hepatic ischemia), but these levels were significantly less in the preconditioned group. Although use of IP in hepatic resectional surgery led to fewer cases of sinusoidal apoptosis and hepatocellular injury, it did not have a significant clinical effect on intensive care requirements, hospitalization, or mortality. While IP was a safe technique for use by Nuzzo et al, intermittent ischemia provided more effective protection of residual liver parenchyma and function than IP during prolonged ischemia of more than 75 minutes in a mouse model.28

Organ transplantation was one of the greatest medical advancements of the 20th century, made possible because of huge strides in immunology and the development of meticulous surgical technique. Could there possibly be a role for IP in transplantation? Ischemic preconditioning of murine liver grafts before transplantation diminished oxidative stress, tumor necrosis factor α production, neutrophil recruitment, and pulmonary injury.29-31 Human liver transplant recipients from donors undergoing cardiopulmonary arrest prior to organ harvest had comparable graft survival in comparison with recipients of healthy livers.32 The short period of circulatory arrest, which might almost be regarded as a form of clinical IP, resulted in an overall longer organ ischemic time but did not appear to worsen the outcome of those liver transplants. In a matched-pair analysis, 40 grafts from cardiac arrest donors had similar results of liver chemistry analysis and histological results from postperfusion biopsies as nonarrest donors.33 Although brief preconditioning ischemia does not appear to be harmful in these retrospective studies, proper clinical trials using IP in human transplantation are needed. Perhaps IP may provide an additional dimension to the benefits observed with current methods of prolonging organ viability, such as the use of organ preservation solutions containing antioxidants, and transportation of donor organs under hypothermic conditions.

Lung

Reduction of neutrophil infiltration, parenchymal injury and edema in IP-protected lungs has been shown in canine, rabbit, and guinea pig models.34-36 In addition, pulmonary compliance and gas exchange was better in preconditioned lungs prior to prolonged ischemia and reperfusion in other animal studies.36-39 In a randomized trial of 20 patients undergoing pulmonectomy, those receiving IP by clamping of the main pulmonary artery for 10 minutes prior to resection had significantly higher levels of superoxide dismutase.40 In another study, 8 patients underwent isolated lung perfusion with doxorubicin intraoperatively for unresectable cancer.41 Although there were no mortalities in either group, patients receiving prior IP had significantly fewer cases of pulmonary edema, inflammatory cell infiltrate, focal hemorrhages, and alveolar disruption.

Brain

Both early42 and delayed43 cerebral ischemic tolerance have been demonstrated in murine models. Mitochondrial KATP channels, an important gateway for protection from I/R injury in the heart, have also been identified in the rat brain.44 Ischemic preconditioning 24 hours prior to an I/R insult can decrease the degree of cerebral infarction by more than half when compared with control rats.45 This protection is partly owing to better perfusion of the cerebral microcirculation in preconditioned animals. The normally hypoxia-sensitive rat brain can undergo genetic reprogramming after IP to enhance survival during further ischemia.46 In a review of 148 patients with stroke, Weih et al47 suggested that a favorable outcome and poststroke independence were significantly associated with prior transient ischemic attack (TIA). In another retrospective study, Moncayo et al48 found that patients who sustained cerebral infarction within 1 week of a TIA had more favorable neurologic recovery. These findings hint that a second period of cerebral ischemia is better tolerated when applied close to the preceding one, raising issues about the optimal timing of carotid endarterectomy after a TIA—should surgery be carried out within 1 week?

Two more studies from Germany have raised the possibility of brain preconditioning. Sitzer et al49 analyzed 332 patients with TIA preceding anterior circulation infarction. This multicenter study had a denominator of 4465 patients. A robust association was found between a preceding TIA and better outcome after stroke. Even after correction for the degree of disability on admission, preceding TIA was associated with a 1.5-fold higher probability of favorable outcome. A study by Wegener et al50 suggested the existence of endogenous neuroprotection in the human brain. Magnetic resonance imaging performed within 12 hours of stroke onset revealed smaller infarct volumes (associated with milder clinical deficits) in patients with a history of TIA, despite similar size and severity of the perfusion deficit.

Skeletal muscle

The first demonstration of the protective effect of IP in skeletal muscle was in a porcine latissimus dorsi muscle flap model.51 Further studies in rodent latissimus dorsi flaps52 and rodent and porcine hind limb muscle53-55 showed a reduction of infarct size of 44% to 62% in IP-treated animals following I/R injury. This protection extended to free myocutaneous and skin tissue transfer, increasing the area of preconditioned flaps that survived prolonged ischemia of up to 14 hours by 2 to 5 times.56 Not only does IP provide protection from infarction, it also maintains good skeletal muscle function. Maximum contractile force, endurance, and recovery were better in preconditioned rodent hind limb muscle subjected to prolonged ischemia.57,58 The protective effects of IP extend to both fast and slow twitch muscle fibers.59 Kharbanda et al60 demonstrated that human skeletal muscle can be preconditioned. Ischemic preconditioning reduced endothelial dysfunction and neutrophil activation in forearms of healthy volunteers subjected to tourniquet-induced I/R injury. Similar protection was observed after remote preconditioning, when the IP stimulus was applied to the contralateral forearm.61

Routine orthopedic or peripheral vascular surgery is unlikely to benefit significantly from any use of IP, as skeletal muscle is able to withstand short periods of ischemia (1-2 hours) with little clinical effect on the patient. However, prolonged ischemic times which are likely during complex thoracoabdominal aortic/mesenteric reconstructions and trauma may be rendered safer by the use of preconditioning ischemia, although applying this in the emergency situation may have practical limitations. In experimental rabbit and rodent models, IP has been shown to reduce the incidence of spinal cord infarction after prolonged aortic occlusion.62,63 Another possible use of IP is for reconstructive surgery. Kuntscher et al64 and Addison et al65 have demonstrated in rodent and porcine models that this preconditioning can be effected on the opposite limb or at a site distant from the muscle in question. A muscle flap could be raised at the same time as a tourniquet placed on the same or opposite limb with equivalent protective effect, making IP a potentially simple technique to improve outcome after microsurgical free tissue transfer.

Kidney

Murine renal morphology and function measured by glomerular filtration rate, fractional excretion of sodium and lithium, and serum analysis of urea and creatinine have all been shown to be protected by IP after I/R injury.66-68 Murine kidneys subjected to 40 minutes of ischemia have demonstrated consistently better renal excretion in the preconditioned group up to 9 days after reperfusion.69 A recent study suggested this protection may persist for up to 12 weeks.70 Unfortunately, these favorable effects have not been reproduced in the porcine71 or canine72 model. On the other hand, human proximal tubular epithelial cells have been shown in vitro to adopt a protective phenotype to hypoxia following IP.73,74 No formal studies on human kidneys have been carried out, but the advantage of enhancing resistance to ischemia cannot be overstated, as ischemic renal failure is a serious and not uncommon complication following major surgery,75 with significant attendant patient morbidity and mortality.

Intestine

In murine and canine intestinal models,76,77 IP has been shown to reduce acidosis, neutrophil recruitment and oxidative stress, and to maintain villous height after I/R injury. Gastric preconditioning in rats significantly reduced the size of mucosal lesions, induced by not only prolonged ischemia but also irritants such as 100% ethanol.78 Prostaglandins and intrinsic neural pathways appear to play an important role in the gastroprotective effects of IP. While endogenous opioid peptides released after IP such as leuenkephalin were responsible for mediating protection from I/R injury in rat small intestine,79 nuclear factor κB-related adaptive mechanisms were initiated within 1 hour of preconditioning ischemia in a canine model,80 with the response peaking at 3 hours. In a comparison of ischemic and adenosine preconditioning in a rodent jejunal flap model,81 both forms of preconditioning were found to be highly protective against I/R injury in terms of oxidative stress, apoptosis, and histopathological damage. These results augur well for the use of IP during intestinal free tissue transfers and transplantation.

Can ip make the journey from bench to bedside?

Ischemic preconditioning provides ischemia protection by a variety of physiological mechanisms. Energy requirements are reduced, conserving substrates and diminishing metabolism. Acid base and electrolyte homeostasis is therefore better controlled. Preconditioned tissues also demonstrate reduced oxidative stress, neutrophil activation, and cytokine production and apoptosis. However, an important observation from Murry et al1 in their original study, which is often overlooked, is that IP did not have any protective effect when myocardial ischemia was extended from 40 minutes to 3 hours. This implies that preconditioning merely allows organs to withstand marginally longer periods of ischemia than nonpreconditioned tissues. The conversion to a hypoxia-tolerant phenotype is incomplete at best. Hard objective evidence such as reduction in major morbidity and mortality after preconditioning is scarce which may be due to the lack of sizeable randomized controlled trials to date.

In most branches of surgery, specific techniques have been developed to reduce operative ischemia. In addition, the excellent anesthetic and intensive care support available today has led to a dramatic reduction of complications in most elective surgical procedures. The one subset of patients who may benefit most—those who present with acute ischemic events—unfortunately find their window of opportunity for preconditioning already closed. In this climate, it is not unexpected that IP has not revolutionized modern clinical practice as envisioned more than a decade ago. However, as Yellon et al4, Clavien et al25 and Chen et al40 have shown, IP can be performed in a safe and elegant manner as an adjunct to major surgery in a variety of organ systems. As more complex operative procedures are developed, IP may still find its niche and therefore should be available to any surgeon seeking to push forward the frontiers of clinical practice.

Correspondence: Shanker Pasupathy, FRCS, Department of General Surgery, Singapore General Hospital, Outram Rd, Singapore 169608 (s_pasu@hotmail.com).

Accepted for Publication: November 1, 2004.

References
1.
Murry  CEJennings  RBReimer  KA Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium.  Circulation 1986;741124- 1136PubMedGoogle ScholarCrossref
2.
Cohen  MVBaines  CPDowney  JM Ischemic preconditioning: from adenosine receptor of KATP channel.  Annu Rev Physiol 2000;6279- 109PubMedGoogle ScholarCrossref
3.
Deutsch  EBerger  MKussmaul  WGHirshfeld  JW  JrHerrmann  HCLaskey  WK Adaptation to ischemia during percutaneous transluminal coronary angioplasty: clinical, hemodynamic, and metabolic features.  Circulation 1990;822044- 2051PubMedGoogle ScholarCrossref
4.
Yellon  DMAlkhulaifi  AMPugsley  WB Preconditioning the human myocardium.  Lancet 1993;342276- 277PubMedGoogle ScholarCrossref
5.
Jenkins  DPPugsley  WBAlkhulaifi  AMKemp  MHooper  JYellon  DM Ischaemic preconditioning reduces troponin T release in patients undergoing coronary artery bypass surgery.  Heart 1997;77314- 318PubMedGoogle Scholar
6.
Ottani  FGalvani  MFerrini  D  et al.  Prodromal angina limits infarct size: a role for ischemic preconditioning.  Circulation 1995;91291- 297PubMedGoogle ScholarCrossref
7.
Kloner  RAShook  TPrzyklenk  K  et al.  Previous angina alters in-hospital outcome in TIMI 4: a clinical correlate to preconditioning?  Circulation 1995;9137- 45PubMedGoogle ScholarCrossref
8.
Kloner  RAShook  TAntman  EM  et al.  Prospective temporal analysis of the onset of preinfarction angina versus outcome: an ancillary study in TIMI-9B.  Circulation 1998;971042- 1045PubMedGoogle ScholarCrossref
9.
Leesar  MAStoddard  MFManchikalapudi  SBolli  R Bradykinin-induced preconditioning in patients undergoing coronary angioplasty.  J Am Coll Cardiol 1999;34639- 650PubMedGoogle ScholarCrossref
10.
Kopecky  SLAviles  RJBell  MR  et al.  A randomized, double-blinded, placebo-controlled, dose-ranging study measuring the effect of an adenosine agonist on infarct size reduction in patients undergoing primary percutaneous transluminal coronary angioplasty: the ADMIRE (AmP579 Delivery for Myocardial Infarction REduction) study.  Am Heart J 2003;146146- 152PubMedGoogle ScholarCrossref
11.
Imagawa  JBaxter  GFYellon  DM Myocardial protection afforded by nicorandil and ischaemic preconditioning in a rabbit infarct model in vivo.  J Cardiovasc Pharmacol 1998;3174- 79PubMedGoogle ScholarCrossref
12.
IONA Study Group, Effect of nicorandil on coronary events in patients with stable angina: the Impact Of Nicorandil in Angina (IONA) randomised trial.  Lancet 2002;3591269- 1275PubMedGoogle ScholarCrossref
13.
Loubani  MGalinanes  M Long-term administration of nicorandil abolishes ischemic and pharmacologic preconditioning of the human myocardium: role of mitochondrial adenosine triphosphate-dependent potassium channels.  J Thorac Cardiovasc Surg 2002;124750- 757PubMedGoogle ScholarCrossref
14.
Ishihara  MInoue  IKawagoe  T  et al.  Diabetes mellitus prevents ischemic preconditioning in patients with a first acute anterior wall myocardial infarction.  J Am Coll Cardiol 2001;381007- 1011PubMedGoogle ScholarCrossref
15.
Forlani  STomai  FDe Paulis  R  et al.  Preoperative shift from glibenclamide to insulin is cardioprotective in diabetic patients undergoing coronary artery bypass surgery.  J Cardiovasc Surg (Torino) 2004;45117- 122PubMedGoogle Scholar
16.
Kloner  RAPrzyklenk  KShook  TCannon  CP Protection conferred by preinfarct angina is manifest in the aged heart: evidence from the TIMI 4 trial.  J Thromb Thrombolysis 1998;689- 92PubMedGoogle ScholarCrossref
17.
Wu  ZKPehkonen  ELaurikka  J  et al.  The protective effects of preconditioning decline in aged patients undergoing coronary artery bypass grafting.  J Thorac Cardiovasc Surg 2001;122972- 978PubMedGoogle ScholarCrossref
18.
Bartling  BFriedrich  ISilber  RESimm  A Ischemic preconditioning is not cardioprotective in senescent human myocardium.  Ann Thorac Surg 2003;76105- 111PubMedGoogle ScholarCrossref
19.
Loubani  MGhosh  SGalinanes  M The aging human myocardium: tolerance to ischemia and responsiveness to ischemic preconditioning.  J Thorac Cardiovasc Surg 2003;126143- 147PubMedGoogle ScholarCrossref
20.
Tomoda  HAoki  N Coronary blood flow in evolving myocardial infarction preceded by preinfarction angina: a critical reevaluation of preconditioning effects in clinical cases.  Angiology 2004;559- 15PubMedGoogle ScholarCrossref
21.
Hardy  KJMcClure  DNSubwongcharoen  S Ischaemic preconditioning of the liver: a preliminary study.  Aust N Z J Surg 1996;66707- 710PubMedGoogle ScholarCrossref
22.
Yoshizumi  TYanaga  KSoejima  YMaeda  TUchiyama  HSugimachi  K Amelioration of liver injury by ischaemic preconditioning.  Br J Surg 1998;851636- 1640PubMedGoogle ScholarCrossref
23.
Peralta  CFernandez  LPanes  J  et al.  Preconditioning protects against systemic disorders associated with hepatic ischemia-reperfusion through blockade of tumor necrosis factor-induced P-selectin up-regulation in the rat.  Hepatology 2001;33100- 113PubMedGoogle ScholarCrossref
24.
Peralta  CPerales  JCBartrons  R  et al.  The combination of ischemic preconditioning and liver Bcl-2 overexpression is a suitable strategy to prevent liver and lung damage after hepatic ischemia-reperfusion.  Am J Pathol 2002;1602111- 2122PubMedGoogle ScholarCrossref
25.
Clavien  PAYadav  SSindram  DBentley  RC Protective effects of ischemic preconditioning for liver resection performed under inflow occlusion in humans.  Ann Surg 2000;232155- 162PubMedGoogle ScholarCrossref
26.
Clavien  PASelzner  MRudiger  HA  et al.  A prospective randomized study in 100 consecutive patients undergoing major liver resection with versus without ischemic preconditioning.  Ann Surg 2003;238843- 850PubMedGoogle ScholarCrossref
27.
Nuzzo  GGiuliante  FVellone  M  et al.  Pedicle clamping with ischemic preconditioning in liver resection.  Liver Transpl 2004;10 ((suppl 1)) S53- S57PubMedGoogle ScholarCrossref
28.
Rudiger  HAKang  KJSindram  DRiehle  HMClavien  PA Comparison of ischemic preconditioning and intermittent and continuous inflow occlusion in the murine liver.  Ann Surg 2002;235400- 407PubMedGoogle ScholarCrossref
29.
Fernandez  LHeredia  NGrande  L  et al.  Preconditioning protects liver and lung damage in rat liver transplantation: role of xanthine/xanthine oxidase.  Hepatology 2002;36562- 572PubMedGoogle ScholarCrossref
30.
Arai  MThurman  RGLemasters  JJ Ischemic preconditioning of rat livers against cold storage-reperfusion injury: role of nonparenchymal cells and the phenomenon of heterologous preconditioning.  Liver Transpl 2001;7292- 299PubMedGoogle ScholarCrossref
31.
Jiang  YGu  XPQiu  YD  et al.  Ischemic preconditioning decreases C-X-C chemokine expression and neutrophil accumulation early after liver transplantation in rats.  World J Gastroenterol 2003;92025- 2029PubMedGoogle Scholar
32.
Totsuka  EFung  JJUrakami  A  et al.  Influence of donor cardiopulmonary arrest in human liver transplantation: possible role of ischemic preconditioning.  Hepatology 2000;31577- 580PubMedGoogle ScholarCrossref
33.
Wilson  DJFisher  ADas  K  et al.  Donors with cardiac arrest: improved organ recovery but no preconditioning benefit in liver allografts.  Transplantation 2003;751683- 1687PubMedGoogle ScholarCrossref
34.
Li  GChen  SLou  WLu  E Protective effects of ischemic preconditioning on donor lung in canine lung transplantation.  Chest 1998;1131356- 1359PubMedGoogle ScholarCrossref
35.
Soncul  HOz  EKalaycioglu  S Role of ischemic preconditioning on ischemia-reperfusion injury of the lung.  Chest 1999;1151672- 1677PubMedGoogle ScholarCrossref
36.
Gasparri  RIJannis  NCFlameng  WJLerut  TEVan Raemdonck  DE Ischemic preconditioning enhances donor lung preservation in the rabbit.  Eur J Cardiothorac Surg 1999;16639- 646PubMedGoogle ScholarCrossref
37.
Du  ZYHicks  MWinlaw  DSpratt  PMacdonald  P Ischemic preconditioning enhances donor lung preservation in the rat.  J Heart Lung Transplant 1996;151258- 1267PubMedGoogle Scholar
38.
Featherstone  RLChambers  DJKelly  FJ Ischemic preconditioning enhances recovery of isolated rat lungs after hypothermic preservation.  Ann Thorac Surg 2000;69237- 242PubMedGoogle ScholarCrossref
39.
Friedrich  ISpillner  JLu  EX  et al.  Ischemic pre-conditioning of 5 minutes but not of 10 minutes improves lung function after warm ischemia in a canine model.  J Heart Lung Transplant 2001;20985- 995PubMedGoogle ScholarCrossref
40.
Chen  SLi  GLong  L Clinical research of ischemic preconditioning on lung protection.  Hunan Yi Ke Da Xue Xue Bao 1999;24357- 359PubMedGoogle Scholar
41.
Zhang  CFChen  SX Clinical study of ischemic preconditioning on isolated lung perfusion with chemotherapeutic agents in the treatment of unresectable lung cancer.  Hunan Yi Ke Da Xue Xue Bao 2001;2651- 54PubMedGoogle Scholar
42.
Perez-Pinzon  MAXu  GPDietrich  WDRosenthal  MSick  TJ Rapid preconditioning protects rats against ischemic neuronal damage after 3 but not 7 days of reperfusion following global cerebral ischemia.  J Cereb Blood Flow Metab 1997;17175- 182PubMedGoogle ScholarCrossref
43.
Kitagawa  KMatsumoto  MTagaya  M  et al.  “Ischemic tolerance” phenomenon found in the brain.  Brain Res 1990;52821- 24PubMedGoogle ScholarCrossref
44.
Bajgar  RSeetharaman  SKowaltowski  AJGarlid  KDPaucek  P Identification and properties of a novel intracellular (mitochondrial) ATP-sensitive potassium channel in brain.  J Biol Chem 2001;27633369- 33374PubMedGoogle ScholarCrossref
45.
Alkayed  NJGoyagi  TJoh  HD  et al.  Neuroprotection and P450 2C11 upregulation after experimental transient ischemic attack.  Stroke 2002;331677- 1684PubMedGoogle ScholarCrossref
46.
Stenzel-Poore  MPStevens  SLXiong  Z  et al.  Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states.  Lancet 2003;3621028- 1037PubMedGoogle ScholarCrossref
47.
Weih  MKallenberg  KBergk  A  et al.  Attenuated stroke severity after prodromal TIA: a role for ischemic tolerance in the brain?  Stroke 1999;301851- 1854PubMedGoogle ScholarCrossref
48.
Moncayo  Jde Freitas  GRBogousslavsky  JAltieri  Mvan Melle  G Do transient ischemic attacks have a neuroprotective effect?  Neurology 2000;542089- 2094PubMedGoogle ScholarCrossref
49.
Sitzer  MFoerch  CNeumann-Haefelin  T  et al.  Transient ischaemic attack preceding anterior circulation infarction is independently associated with favourable outcome.  J Neurol Neurosurg Psychiatry 2004;75659- 660PubMedGoogle ScholarCrossref
50.
Wegener  SGottschalk  BJovanovic  V  et al.  Transient ischemic attacks before ischemic stroke: preconditioning the human brain? A multicenter magnetic resonance imaging study.  Stroke 2004;35616- 621PubMedGoogle ScholarCrossref
51.
Mounsey  RAPang  CYForrest  C Preconditioning: a new technique for improved muscle flap survival.  Otolaryngol Head Neck Surg 1992;107549- 552PubMedGoogle Scholar
52.
Carroll  CMCarroll  SMOvergoor  MLTobin  GBarker  JH Acute ischemic preconditioning of skeletal muscle prior to flap elevation augments muscle-flap survival.  Plast Reconstr Surg 1997;10058- 65PubMedGoogle ScholarCrossref
53.
Pang  CYYang  RZZhong  AXu  NBoyd  BForrest  CR Acute ischaemic preconditioning protects against skeletal muscle infarction in the pig.  Cardiovasc Res 1995;29782- 788PubMedGoogle ScholarCrossref
54.
Papanastasiou  SEstdale  SEHomer-Vanniasinkam  SMathie  RT Protective effect of preconditioning and adenosine pretreatment in experimental skeletal muscle reperfusion injury.  Br J Surg 1999;86916- 922PubMedGoogle ScholarCrossref
55.
Bushell  AJKlenerman  LTaylor  S  et al.  Ischaemic preconditioning of skeletal muscle: protection against the structural changes induced by ischaemia/reperfusion injury.  J Bone Joint Surg Br 2002;841184- 1188PubMedGoogle ScholarCrossref
56.
Zahir  KSSyed  SAZink  JRRestifo  RJThomson  JG Ischemic preconditioning improves the survival of skin and myocutaneous flaps in a rat model.  Plast Reconstr Surg 1998;102140- 150PubMedGoogle ScholarCrossref
57.
Gurke  LMarx  ASutter  PM  et al.  Ischemic preconditioning improves post-ischemic skeletal muscle function.  Am Surg 1996;62391- 394PubMedGoogle Scholar
58.
Schroeder  CA  JrLee  HTShah  PMBabu  SCThompson  CIBelloni  FL Preconditioning with ischemia or adenosine protects skeletal muscle from ischemic tissue reperfusion injury.  J Surg Res 1996;6329- 34PubMedGoogle ScholarCrossref
59.
Mattei  ASutter  PMMarx  AStierli  PHeberer  MGurke  L Preconditioning with short cycles improves ischemic tolerance in rat fast- and slow-twitch skeletal muscle.  Eur Surg Res 2000;32297- 304PubMedGoogle ScholarCrossref
60.
Kharbanda  RKPeters  MWalton  B  et al.  Ischemic preconditioning prevents endothelial injury and systemic neutrophil activation during ischemia-reperfusion in humans in vivo.  Circulation 2001;1031624- 1630PubMedGoogle ScholarCrossref
61.
Kharbanda  RKMortensen  UMWhite  PA  et al.  Transient limb ischemia induces remote ischemic preconditioning in vivo.  Circulation 2002;1062881- 2883PubMedGoogle ScholarCrossref
62.
Zvara  DAColonna  DMDeal  DDVernon  JCGowda  MLundell  JC Ischemic preconditioning reduces neurologic injury in a rat model of spinal cord ischemia.  Ann Thorac Surg 1999;68874- 880PubMedGoogle ScholarCrossref
63.
Fan  TWang  CCWang  FM  et al.  Experimental study of the protection of ischemic preconditioning to spinal cord ischemia.  Surg Neurol 1999;52299- 305PubMedGoogle ScholarCrossref
64.
Kuntscher  MVKastell  TSauerbier  MNobiling  RGebhard  MMGermann  G Acute remote ischemic preconditioning on a rat cremasteric muscle flap model.  Microsurgery 2002;22221- 226PubMedGoogle ScholarCrossref
65.
Addison  PDNeligan  PCAshrafpour  H  et al.  Noninvasive remote ischemic preconditioning for global protection of skeletal muscle against infarction.  Am J Physiol Heart Circ Physiol 2003;285H1435- H1443PubMedGoogle Scholar
66.
Ogawa  TMimura  YHiki  NKanauchi  HKaminishi  M Ischaemic preconditioning ameliorates functional disturbance and impaired renal perfusion in rat ischaemia-reperfused kidneys.  Clin Exp Pharmacol Physiol 2000;27997- 1001PubMedGoogle ScholarCrossref
67.
Lee  HTEmala  CW Protective effects of renal ischemic preconditioning and adenosine pretreatment: role of A(1) and A(3) receptors.  Am J Physiol Renal Physiol 2000;278F380- F387PubMedGoogle Scholar
68.
Jefayri  MKGrace  PAMathie  RT Attenuation of reperfusion injury by renal ischaemic preconditioning: the role of nitric oxide.  BJU Int 2000;851007- 1013PubMedGoogle ScholarCrossref
69.
Toosy  NMcMorris  ELGrace  PAMathie  RT Ischaemic preconditioning protects the rat kidney from reperfusion injury.  BJU Int 1999;84489- 494PubMedGoogle ScholarCrossref
70.
Park  KMByun  JYKramers  CKim  JIHuang  PLBonventre  JV Inducible nitric-oxide synthase is an important contributor to prolonged protective effects of ischemic preconditioning in the mouse kidney.  J Biol Chem 2003;27827256- 27266PubMedGoogle ScholarCrossref
71.
Behrends  MWalz  MKKribben  A  et al.  No protection of the porcine kidney by ischaemic preconditioning.  Exp Physiol 2000;85819- 827PubMedGoogle ScholarCrossref
72.
Kosieradzki  MAmetani  MSouthard  JHMangino  MJ Is ischemic preconditioning of the kidney clinically relevant?  Surgery 2003;13381- 90PubMedGoogle ScholarCrossref
73.
Turman  MAKahn  DARosenfeld  SLApple  CABates  CM Characterization of human proximal tubular cells after hypoxic preconditioning: constitutive and hypoxia-induced expression of heat shock proteins HSP70 (A, B, and C), HSC70, and HSP90.  Biochem Mol Med 1997;6049- 58PubMedGoogle ScholarCrossref
74.
Lee  HTEmala  CW Preconditioning and adenosine protect human proximal tubule cells in an in vitro model of ischemic injury.  J Am Soc Nephrol 2002;132753- 2761PubMedGoogle ScholarCrossref
75.
Barratt  JParajasingam  RSayers  RDFeehally  J Outcome of acute renal failure following surgical repair of ruptured abdominal aortic aneurysms.  Eur J Vasc Endovasc Surg 2000;20163- 168PubMedGoogle ScholarCrossref
76.
Sola  ADe Oca  JGonzalez  R  et al.  Protective effect of ischemic preconditioning on cold preservation and reperfusion injury associated with rat intestinal transplantation.  Ann Surg 2001;23498- 106PubMedGoogle ScholarCrossref
77.
Vlasov  TDSmirnov  DANutfullina  GM Preconditioning of the small intestine to ischemia in rats.  Neurosci Behav Physiol 2002;32449- 453PubMedGoogle ScholarCrossref
78.
Pajdo  RBrzozowski  TKonturek  PC  et al.  Ischemic preconditioning, the most effective gastroprotective intervention: involvement of prostaglandins, nitric oxide, adenosine and sensory nerves.  Eur J Pharmacol 2001;427263- 276PubMedGoogle ScholarCrossref
79.
Zhang  YWu  YXHao  YBDun  YYang  SP Role of endogenous opioid peptides in protection of ischemic preconditioning in rat small intestine.  Life Sci 2001;681013- 1019PubMedGoogle ScholarCrossref
80.
Ferencz  ASzanto  ZBorsiczky  B  et al.  The effects of preconditioning on the oxidative stress in small-bowel autotransplantation.  Surgery 2002;132877- 884PubMedGoogle ScholarCrossref
81.
Unal  SDemirkan  FArslan  E  et al.  Comparison of ischemic and chemical preconditioning in jejunal flaps in the rat.  Plast Reconstr Surg 2003;1121024- 1031PubMedGoogle ScholarCrossref
×