Safety and Efficacy of Nivolumab in Patients With Metastatic Renal Cell Carcinoma Treated Beyond Progression
A Subgroup Analysis of a Randomized Clinical Trial

Saby George, MD; Robert J. Motzer, MD; Hans J. Hammers, MD, PhD; Bruce G. Redman, DO; Timothy M. Kuzel, MD; Scott S. Tykodi, MD, PhD; Elizabeth R. Plimack, MD, MS; Joel Jiang, PhD; Ian M. Waxman, MD; Brian I. Rini, MD

IMPORTANCE Response patterns with immunotherapy may differ from those of other treatments. This warrants further investigation because some patients may benefit from continued immunotherapy beyond Response Evaluation Criteria in Solid Tumors (RECIST)-defined first progression.

OBJECTIVE To evaluate the safety and potential benefit of treatment with nivolumab, a programmed cell death 1 immune checkpoint inhibitor, beyond investigator-assessed first progression in patients with metastatic renal cell carcinoma (mRCC).

DESIGN, SETTING, AND PARTICIPANTS Subgroup analysis of a blinded, randomized, multicenter, phase 2 dose-ranging trial initiated May 31, 2011, including patients with clear-cell mRCC previously treated with antiangiogenic therapy. Data cutoffs for this subgroup analysis were May 15, 2013, for progression-free survival and objective response rate and March 5, 2014, for overall survival and duration of response. In this analysis, patients treated beyond first progression received their last dose of nivolumab more than 6 weeks after RECIST-defined progression, and patients not treated beyond first progression discontinued nivolumab before or at RECIST-defined progression.

INTERVENTIONS Nivolumab 0.3, 2, or 10 mg/kg intravenously every 3 weeks.

MAIN OUTCOMES AND MEASURES Safety and efficacy of nivolumab treatment.

RESULTS Of 168 patients (median [range] age, 61 [37-81] years; 72% male) randomized to nivolumab, 154 experienced progression (36 were treated beyond first progression, 26 were treated beyond first progression for ≤6 weeks, and 92 were not treated beyond first progression), 13 were treated and did not experience progression, and 1 was not treated. Prior to first progression, the RECIST-defined objective response rate was 14% (5 patients) and 16% (15 patients), and median progression-free survival was 4.2 (95% CI, 2.8-5.5) and 2.6 (95% CI, 1.5-3.9) months in patients treated and not treated beyond progression, respectively. Following initial progression, 25 (69%) patients treated beyond progression experienced subsequent tumor reduction or stabilization in target lesion size. The incidence of treatment-related adverse events was higher in patients treated beyond progression (n = 29 [81%]) vs those not treated beyond progression (n = 61 [66%]); however, after adjusting for length of treatment exposure, incidence was lower in patients treated beyond progression (322.9 vs 518.7 incidence rate/100 patient-years for patients treated vs not treated beyond progression).

CONCLUSIONS AND RELEVANCE In this subgroup analysis, a proportion of patients who continued treatment beyond RECIST-defined first progression demonstrated sustained reductions in tumor burden or stabilization in the size of target lesions, with an acceptable safety profile. Further analysis will help define the clinical benefit for patients with mRCC treated with nivolumab beyond progression.

TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01354431

Published online May 12, 2016.
neolimumab in various tumor types has sometimes been associ-
ated with 19% vs 37%.

Quently in nivolumab-treated patients than in everolimus-
treated patients (19% vs 37%).

Treatment of metastatic renal cell carcinoma (mRCC) resulted in
a significant survival advantage over everolimus (25.0 vs
19.6 months, hazard ratio 0.73; \(P = .002 \)).

Grade 3 or 4 treatment-related adverse events (AEs) occurred less fre-
quently in nivolumab-treated patients than in everolimus-
treated patients (19% vs 37%).

Tumor flare is believed to be due to transient immune cell infiltration into the tumor or continued tumor growth that can occur while the immune system is priming for an antitumor response (eFigure 1 in Supplement 1).

Therefore, the time required to establish an effective immune response to active immunotherapy may exceed what is expected based on typical response times to targeted therapies.

Historically, the Response Evaluation Criteria in Solid Tumors (RECIST) Working Group has provided standard guidelines to define tumor response to therapy. By RECIST criteria, a significant (≥20%) increase in the size of tumor lesions and/or the development of new lesions is considered unequivocal evidence of disease progression. Thus, when assessed by RECIST criteria, tumor flare occurring with immunotherapy will be viewed as disease progression and may lead to discontinuation of treatment before the potential clinical benefit of the treatment is fully realized. It is therefore of interest to understand whether patients receiving immunotherapy may derive continued clinical benefit if treated beyond RECIST-defined progression.

Methods

Study Design and Treatment

This was a subgroup analysis of a blinded, randomized, multicenter, phase 2 dose-ranging trial conducted at academic centers in the United States, Canada, Finland, and Italy (see study protocol in Supplement 2). Patients were randomized 1:1:1 to receive nivolumab 0.3, 2, or 10 mg/kg every 3 weeks as a 60-minute intravenous infusion on day 1 of each treatment cycle.

Treatment continued until disease progression defined by RECIST version 1.1 (growth of existing lesions defined as ≥20% increase in the sum of diameters of target lesions, taking as reference the smallest sum during study participation, and absolute increase of ≥5 mm or appearance of new lesions), intolerance to treatment, or until stopped for other protocol-defined reasons. Per protocol, treatment beyond first progression was allowed in patients continuing to tolerate nivolumab and exhibiting investigator-assessed clinical benefit (eg, immune-related partial response; immune-related stable disease) at the time of first progression. Immune-related partial response was defined as at least 30% decrease in the sum of diameters of target lesions and all new measurable lesions,
taking as reference the baseline sum diameters. Immune-related stable disease was defined as neither sufficient shrinkage to qualify for immune-related partial response nor sufficient increase to qualify for immune-related progressive disease, taking as reference the smallest sum diameters during study participation. The study was approved by the institutional review board or independent ethics committee of each center. All patients provided written informed consent.

Patients
Patients eligible for study inclusion had histologic confirmation of RCC with a clear-cell component and measurable disease by RECIST version 1.1, had received prior treatment with at least 1 antiangiogenic therapy in the metastatic setting, experienced disease progression within 6 months of enrollment, and had a Karnofsky performance status (KPS) of at least 70. Patients with active central nervous system metastases, autoimmune disease, or who had received more than 3 prior treatment regimens in the metastatic setting were excluded.

In this analysis, patients considered to be treated beyond first progression were defined as having received their last available dose of nivolumab more than 6 weeks after initial progression date, and discontinued therapy after the next documented progression. Patients defined as not treated beyond first progression discontinued study treatment before or on the date of progression. Patients defined as treated briefly beyond progression received their last available dose of nivolumab no more than 6 weeks after the date of progression.

Efficacy and Safety Assessments
The primary end point was dose response by PFS. Progression-free survival was defined as time from randomization to investigator-assessed first clinical or radiographic RECIST progression, or death. Secondary end points included ORR based on investigator RECIST assessment, time to response, duration of response defined as time from complete response or partial response to first disease progression, and OS beginning 6 weeks from first progression in evaluable patients (those who were alive, continuing in the study, or had <6 weeks between progression and data cutoff) to death. Best overall response was defined as best tumor response (complete or partial response) from randomization to first disease progression or treatment discontinuation. Tumor burden was estimated by measurable disease (presence of ≥1 measurable tumor lesion). Assessments were performed at baseline and every 6 weeks from randomization for the first 12 months and every 12 weeks thereafter, until disease progression or treatment discontinuation (whichever occurred later). After treatment discontinuation, patients were evaluated every 3 months for survival and safety.

Safety was assessed at every clinic visit. Adverse events were graded for severity according to the National Cancer Institute Common Terminology Criteria for Adverse Events, version 4.0.21 Patients were observed for AEs until events resolved, returned to baseline, or were deemed irreversible.

Statistical Analyses
Progression-free survival, OS, and time to objective response were estimated using Kaplan-Meier methodology.22 Two-sided 95% confidence intervals (CIs) for median PFS, OS, and duration were computed by the Brookmeyer and Crowley method.23 The ORR analysis was based on best overall response, as defined in the Methods section, and 2-sided, 95% CIs for the response rate were computed by the Clopper and Pearson method.24 Time to objective response was summarized using descriptive statistics. Tumor burden change (sum of diameters of target lesions) over time for each patient was displayed graphically. Data cutoffs were May 15, 2013, for PFS and ORR analyses and March 5, 2014, for OS and duration of response.

Results
Patient Population
Between May 2011 and January 2012, 168 patients were randomized to 1 of 3 nivolumab doses as previously described.20 The median age of patients was 61 years (range, 37-81) and 72% were male. Of the randomized patients, 154 experienced progression, 13 were treated and did not experience progression, and 1 was not treated. Of the 154 patients who experienced progression, 36 (n = 10, 12, and 14 for the 0.3-, 2-, and 10-mg/kg doses, respectively) were treated beyond first progression for more than 6 weeks after their initial progression date, 26 were treated briefly beyond first progression for 6 weeks or less after their initial progression date (n = 11, 7, and 8 for the 0.3-, 2-, and 10-mg/kg doses), and 92 (n = 31, 32, and 29 for the 0.3-, 2-, and 10-mg/kg doses) were not treated beyond first progression (Figure 1). A summary of characteristics and dosing in patients treated briefly beyond progression can be found in eTable 1 in Supplement 1.

Demographic and baseline characteristics at study entry for patients treated and not treated beyond first progression are summarized in Table 1. A similar proportion of patients treated and not treated beyond first progression met Memorial Sloan Kettering Cancer Center poor-risk criteria (8 [22%] vs 24 [26%]), had a baseline KPS of at least 90 (21 [58%] vs 46 [50%]), and had 1 prior systemic antiangiogenic regimen in the metastatic setting (26 [72%] vs 60 [63%]). Fewer patients treated beyond first progression (25 [69%]) had at least 2 evaluable sites vs those not treated beyond first progression (80 [87%]). Of 36 patients treated beyond progression, 32 patients discontinued treatment; the most common reason for discontinuation was progressive disease (n = 28) (eTable 2 in Supplement 1).

At the time of disease progression, a higher proportion of patients treated beyond first progression (21 [58%]) had a KPS of at least 90 vs those not treated beyond first progression (37 [40%]) (eTable 3 in Supplement 1). At the time of disease progression, a higher proportion of patients with new lesions were treated beyond first progression (22 [61%] vs those not treated beyond first progression (41 [45%]), while a similar proportion of patients with an increase in target lesions were treated (13 [36%]) and not treated beyond first progression (34 [37%]) (eTable 3 in Supplement 1).

Efficacy
A summary of RECIST-based efficacy results before first progression is presented in Table 2. A similar proportion of
patients treated and not treated beyond first progression achieved an objective response (5 [14%] and 15 [16%]). Median (range) time to objective response was longer in patients treated beyond first progression (4.2 [1.4-6.9] months) vs those not treated beyond first progression (2.6 [1.2-5.6] months). Of note, 9 (25%) and 38 (41%) patients treated and not treated beyond first progression, respectively, had progressive disease as their best response. Prior to first progression, patients treated beyond first progression had a longer median PFS (4.2 [95% CI, 2.8-5.5] months) than those not treated beyond first progression (2.6 [95% CI, 1.4-6.9] months) vs those not treated beyond first progression (4.2 [95% CI, 1.5-3.9] months).

Duration of treatment and survival of patients treated beyond first progression are shown in Figure 2. At the time of analysis, 89% (n = 32) of patients treated beyond first progression had discontinued treatment. Of the patients who discontinued treatment, 23 discontinued and died and 9 discontinued. At the time of analysis, 4 (11%) were still receiving treatment more than 3 years after their first progression. Median (range) duration of treatment from time of first progression to last dose or death for patients who discontinued treatment (n = 32) was 4.2 (1.5-32.2) months and the median (range) duration of treatment for those still receiving treatment (n = 4) was 37.4 (33.2-37.8) months.

Change in tumor burden after first progression in patients treated beyond first progression is shown in Figure 3. Following initial progression, 25 (69%) patients treated beyond first progression experienced subsequent tumor reduction in target lesions (Figure 3). Of patients treated beyond first progression who had at least a 20% increase in tumor burden by the time of first progression, half experienced a subsequent tumor reduction (Figure 3). Patterns of change in tumor burden over time (before and after progression) are shown in eFigure 2 in Supplement 1. A total of 12 patients had a change from baseline in tumor burden that exceeded the 30% reduction consistent with a RECIST 1.1 response (eFigure 2 in Supplement 1). Radiographic scans of 2 patients treated beyond first progression are shown in eFigure 3 in Supplement 1.

In a landmark analysis of evaluable patients beginning 6 weeks from first progression, median OS for patients treated beyond first progression was 22.5 (95% CI, 12.3-31.3) months and for those not treated beyond first progression was 12.3 (95% CI, 8.0-17.1) months (eFigure 4 in Supplement 1).

Safety

The overall median (range) number of doses received from the start of the study was 14.5 (5-61) and 3.0 (1-54) in patients treated and not treated beyond first progression, respectively. Patients treated beyond progression received a median (range) of 6.5 (1-53) doses beyond first progression. Consistent with differences in drug exposure between patient groups, the incidence of any-grade treatment-related AEs was higher in patients treated beyond first progression vs those not treated beyond first progression; however, patients treated beyond first progression had a lower incidence of grade 3 or 4 AEs (eTable 4 in Supplement 1). When adjusted for duration of treatment exposure, the incidence of all-grade treatment-related AEs was lower in patients treated beyond first progression vs those not treated beyond first progression (eTable 5 in Supplement 1). In addition, types of treatment-related AEs occurring before and
after first progression were similar in those patients treated beyond progression (eTable 6 in Supplement 1).

Discussion

In this subgroup analysis, a proportion of patients who continued treatment beyond first progression based on investigator-assessed clinical benefit demonstrated sustained reductions in tumor burden or stabilization in the size of target lesions. Consistent with the overall population of this study, the safety profile of nivolumab in patients treated beyond first progression was acceptable, indicating that safe treatment with nivolumab beyond first progression is feasible for patients with previously treated mRCC.

Two prevailing hypotheses have been proposed to explain the initial appearance of progressive disease prior to subsequent clinical benefit that is sometimes observed during immunotherapy. One hypothesis suggests that immunologic treatment may induce infiltration of immune cells and inflammation of the tumor, which results in increased tumor size by objective measures (eg, by imaging). Alternatively, the growth of preexisting lesions or the appearance of new lesions can occur after administration of immunotherapy, as the process of immune activation may potentially be delayed. The tumor may grow transiently during the period of immune activation and before an effective antitumor response occurs. These characteristic effects of immunomodulatory agents may result in the detection of transient progression, which would decrease RECIST-defined PFS, but not necessarily OS. Such phenomena are not uncommon in immunotherapy studies in which treatment is associated with an initial tumor flare prior to reduced tumor burden and shrinkage. For example, studies of nivolumab therapy in melanoma and non–small-cell lung cancer demonstrated that a subgroup of patients treated beyond RECIST-defined first progression showed a nonconventional pattern of benefit that included a reduced tumor burden relative to patients who were not treated beyond first progression. Similar findings were also reported in patients with melanoma who were treated with the anti–cytotoxic T-lymphocyte antigen 4 (CTLA-4) antibody ipilimumab or the anti–PD-1 antibody pembrolizumab. It is not known, however, how T-cell receptor occupancy of drugs such as nivolumab affects tumor response and whether continued treatment is absolutely required for these late responses.

Because RECIST-defined progression during treatment with immunotherapy may not necessarily indicate biologic disease progression, at least in the initial phase, the development of immune-related response criteria was undertaken to better monitor patients treated with immunotherapy. Based on clinical experience with ipilimumab, these criteria were formed to systematically characterize additional patterns of response observed with immunotherapies. Although the concept of immune-related response criteria is important, the criteria are limited in scope because they might not fully address all relevant patterns of clinical activity and therefore new approaches are being considered for patients treated with immunotherapy. For example, composite end points, biomarkers, time to symptomatic progression, and quality of life have all been considered as potential measures to gauge efficacy and/or serve as clinical trial end points for studies evaluating immunotherapy. It is important to note that the whole clinical picture—and not just response criteria—should be taken into account when deciding which patients to treat beyond first progression. Although physicians in this study were not directly asked how they chose which patients to treat beyond first progression, the proportion of patients treated beyond first progression was acceptable, indicating that a safe treatment with nivolumab beyond first progression is feasible for patients with previously treated mRCC.
progression, based on a retrospective assessment of the patient characteristics, those with better KPS, longer time to progression, higher likelihood of disease control, and progression associated with the appearance of new lesions were chosen to continue treatment. Differences seen in duration of treatment and tumor reduction highlight the importance of an individualized approach to decision making when considering treatment with nivolumab beyond first progression. It is likely that patients selected to be treated beyond first progression based on clinical benefit and treatment tolerability would live longer than those who died shortly after starting study treatment and, hence, would not be treated beyond progression. To overcome this limitation, we performed a landmark analysis of patients beginning 6 weeks from first progression and identified differences in OS in patients treated beyond first progression and those not treated beyond first progression.

The following limitations of this analysis should be taken into consideration. The current exploratory analysis comprised a relatively small number of patients treated beyond RECIST-defined first progression. In addition, tumor assessments were conducted every 6 weeks; it is possible that tumor assessments were conducted less often (eg, 8-12 weeks, as in some other studies of immunotherapies)\(^{8,12}\) the treating physician may not have observed the phenomenon of tumor flare (evidenced as an initial RECIST-defined progression) and would thus have had no reason to decide whether...
to continue or discontinue treatment. Additionally, although no new or unexpected AEs were seen in patients treated beyond first progression, it should be restated that this group was preselected per protocol for those who were tolerating therapy.

Conclusions

This analysis demonstrated that sustained reductions in tumor burden or stabilization in the size of target lesions may be possible with continued nivolumab treatment following initial disease progression in mRCC. Furthermore, the present findings suggest that some patients with RECIST-defined progression can safely continue nivolumab treatment if deemed feasible by the treating physician. On the basis of these findings, larger-scale analyses and/or clinical studies of nivolumab treatment beyond RECIST-defined first progression in patients with mRCC are warranted. Additional data may aid in the development of guidelines to help ensure optimal use of the new class of immunotherapy in RCC.

ARTICLE INFORMATION

Accepted for Publication: March 2, 2016.
Published Online: May 12, 2016.

Open Access: This article is published under JAMA Oncology's open access model and is free to read on the day of publication.

Author Affiliations: Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York (George); Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York (Motzer); Department of Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland (Hammers); Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor (Redman); Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois (Kuzel); Department of Medicine, University of Washington and Fred Hutchinson Cancer Research Center, Seattle (Tykodi); Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (Pлимack); Global Biometric Sciences, Bristol-Myers Squibb, Princeton, New Jersey (Jiang); Global Clinical Research, Bristol-Myers Squibb, Princeton, New Jersey (Waxman); Department of Hematology and Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio (Rini).

Author Contributions: Dr George had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: George, Motzer, Hammers, Kuzel, Jiang, Waxman, Rini.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: George, Motzer, Hammers, Tykodi, Pлимack, Jiang, Waxman, Rini.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Jiang, Waxman.

Administrative, technical, or material support: Motzer, Hammers, Tykodi, Waxman.

Study supervision: George, Motzer, Kuzel, Waxman, Rini.

Conflict of Interest Disclosures: Dr George has received grants from Acelerogen, Bayer, Bristol-Myers Squibb, Merck, Novartis, and Pfizer; and personal fees from Astellas, Bayer, Bristol-Myers Squibb, Novartis, Onclive, Sanofi, and Xcenda. Dr Motzer has received grants from Bristol-Myers Squibb, Genentech, GlaxoSmithKline, Merck, Novartis, and Pfizer; and personal fees from Bristol-Myers Squibb, Eisai, Novartis, and Pfizer. Dr Hammers has received grants from Bristol-Myers Squibb, GlaxoSmithKline, Pfizer, and Exelixis; and personal fees from Bristol-Myers Squibb and Ono Pharmaceutical Company. Dr Redman has received grants and personal fees from Bristol-Myers Squibb. Dr Kuzel has received grants from Bayer, Bristol-Myers Squibb, CureTech, Eisai, Genentech, Medimmune, Merck, and Millennium Takeda; and personal fees from Amgen, Argos Therapeutics, Astellas, Bayer, Bionomics, Celgene, Eisai, Genentech, and Janssen Pharmaceuticals. Dr Tykodi has received grants from Argos Therapeutics, Bristol-Myers Squibb, Exelixis, Immatics Biotechnologies, Novartis, and Prometheus; and personal fees from Amgen and Prometheus. Dr Pлимack has received grants from Acceleron Pharma, AstraZeneca, Bristol-Myers Squibb, Dendreon, Eli Lilly, GlaxoSmithKline, Merck, and Pfizer; and personal fees from Acceleron Pharma, Bristol-Myers Squibb, Genentech, Novartis, Pfizer, and Roche. Drs Jiang and Waxman are employees/stockholders of Bristol-Myers Squibb. Dr Rini has received grants from Bristol-Myers Squibb, GlaxoSmithKline, Immatics Biotechnologies, Millennium Pharmaceuticals, Pfizer, and Roche/Genentech; and personal fees from Bristol-Myers Squibb. No other disclosures are reported.

Funding/Support: This study was funded by Bristol-Myers Squibb (Lawrenceville, New Jersey).

Role of the Funder/Sponsor: Bristol-Myers Squibb provided the study drug and worked with investigators to design and conduct the study; and collect, manage, analyze, and interpret the data. Bristol-Myers Squibb, in collaboration with the authors, contributed to the preparation, review, and approval of the manuscript and the decision to submit the manuscript for publication.

Additional Contributions: We thank the patients and their families; research colleagues and clinical teams; and Bristol-Myers Squibb (Lawrenceville, New Jersey)/Ono Pharmaceutical Company Limited (Osaka City, Japan) for supporting this work. Writing and editorial support was provided by Payal Gandhi, PhD (Amgen company); and was funded by Bristol-Myers Squibb. Dr Gandhi was not compensated beyond her salary for this work.

REFERENCES

programmed cell death 1 blockade

TREATMENT OF RENAL CELL CANCER WITH PROGRAMMED CELL DEATH 1 BLOCKADE

How Much Is Enough?

Kim Margolin, MD

In this issue of JAMA Oncology, George and colleagues report a retrospective subset analysis of patients with advanced clear cell renal cancer (RCC) treated beyond first progression (PD) in the phase 2 randomized clinical trial evaluating 3 different nivolumab dose levels. In the original report, among 168 randomized/167 treated patients, the objective response rates were reported as 20%, 22%, and 20% for the 0.3-, 2.0-, and 10-mg/kg doses, respectively. Rates were reported as 20%, 22%, and 20% for the 0.3-, 2.0-, and 10-mg/kg doses, respectively. Results of a randomized phase II trial. J Clin Oncol. 2015;33(13):1430-1437.

The investigators used Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 but reported in an appendix to that study the Immune-Related Response Evaluation Criteria in Solid Tumors (irRECIST) outcomes. Whereas irRECIST uses the same definitions of PD, objective response, and stable disease, it does not count a new lesion as PD if the summed increase in tumor measurements does not exceed 20% and the patient is stable or improved. First progression also requires confirmatory assessments. This is based on the concept that the initial appearance of increased tumor size or a new lesion may represent either transient growth preceding immune-mediated regression or, alternatively, the radiographic consequences of initial influx of potentially therapeutic immune and inflammatory cells. The current lack of any method short of serial biopsies to reliably distinguish these possibilities, as well as to predict which patients in the first group will go on to experience regression vs relentless tumor growth (sometimes termed definitive progression), has dogged efforts to optimize immunotherapy in trials and in practice.

Whereas the present report provides greater detail about patients given 6 or more weeks of additional nivolumab therapy after PD than did the original report, the numbers are difficult to reconcile within and between reports. The present subset analysis states that 154 patients experienced PD, including 36 who received at least 6 weeks of additional nivolumab therapy (the main subjects of this report), and 92 discontinued treatment (used as a comparator here). Twenty-six patients given briefer post-PD therapy are not detailed. The new Consolidated Standard of Reporting Trials (CONSORT) diagram follows all patients through initial and subsequent analysis—although the numbers remain confusing and suggest that patients achieving delayed response during treatment after PD were counted among the original objective responses.

Characteristics and outcomes among the 36 patients treated for 6 or more weeks after PD and the 92 whose nivolumab therapy was discontinued at PD included initial Memorial Sloan Kettering risk category and prior antiangiogenic therapy (similar in the 2 groups), while the numbers of metastatic sites were slightly higher among those not treated beyond PD. Fifty-eight percent of patients who continued therapy had Karnofsky performance status of at least 90% vs only 50% of those whose therapy was discontinued (probably not significantly different, given the sample size). First progression defined by new lesions (PD by RECIST but not necessarily by irRECIST) was more frequent than by increase of at least 20% in target lesion size (PD by both systems) in patients continuing therapy, while those proportions were equal among those discontinuing nivolumab therapy, and the time to progression was substantially shorter in the latter group. While not designed to compare directly or attribute statistical significance to any observed differences, the data suggest that healthier patients were more likely to continue therapy, reflecting protocol allowance of continued therapy beyond PD for patients believed to be benefiting from treatment.